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SECTION 1

INTRODUCTION

The Fourth RADC Database Security Workshop was held at the Stone House Inn,
Little Compton, Rhode Island, in April 1991. The workshop was the fourth in a series
organized by Teresa F. Lunt of SRI International, with encouragement and support from
Joe Giordano of Rome Laboratory. The workshop was sponsored by Rome Laboratory
(formerly Rome Air Development Center (RADC)) and organized by Teresa F. Lunt of SRI
and Rae Burns of The MITRE Corporation. The workshop participants came from the
following organizations: Data Security, Inc., Department of Defense, Gemini Computers,
Inc., George Mason University, The MITRE Corporation, ONERA/CERT,
Oracle Corporation, San Jose State University, Secure Computer Technology Corporation,
and SRI International.

During the workshop, researchers presented work in progress and discussed the theory and
practice of multilevel database security. The "Workshop Summary" by Teresa F. Lunt
highlights some of the technical issues addressed by the presentations and discussions at the
workshop and provides a context for the remaining papers in this report.
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Workshop Summary

Teresa F. Lunt
Computer Science Laboratory

SRI International
Menlo Park, California 94025

The fourth Rome Laboratory workshop on database security was held in Little Compton,
Rhode Island, April 22-25. The workshop was organized by Teresa Lunt of SRI and Rae
Bums of MITRE and was attended by 20 researchers active in the area of database security.
This was the fourth such workshop sponsored by Rome Laboratory; the previous three were
held in Menlo Park, California, in May 1988, in Bethlehem, New Hampshire, in May 1989,
and in Castille, New York, in June 1990. The workshop participants presented work in
progress and focused on some of the remaining challenging problems in database security.
These included inference, polyinstantiation, conflicts between security and integrity, and
secure concurrency controls.

The workshop opened with a session on the inference problem. The inference problem is
when low data can be used to infer high data. Tom Garvey of SRI presented a paper coau-
thored with Teresa Lunt called "Characterizing and Reasoning about Inference Channels."
He includes as part of the inference problem the inferences you might draw from aggregating
information. In his talk Garvey focused on issues of detecting inference channels, quantifying
the "width" of such channels, and eliminating channels. He proposed a formalization of the
problem. He noted that some of the low data used to draw inferences is not stored in the
database but is nevertheless known to users. Any practical approach to the problem has to
take this into account.

Garvey described the inference methods deduction, induction, abduction, and proba-
bilistic deduction, and he defined deductive, abductive, and probabilistic inference channels.
Deduction allows you to reason directly from a set of information to a conclusion. Induction
allows you to draw conclusions about a situation from a set of similar examples. Abduction is
a reasoning method that allows you to find a plausible explanation for a piece of information
Q;, that is, to find what additional information or assumptions are needed, when combined
with the available data, to explain Q. Abduction can also be used to create disinformation to
mislead low users into drawing erroneous but innocuous inferences. Probabilistic deduction
allows you to reason about how likely a statement is to be true. Such quantitative reasoning
methods are important in estimating the size or severity of an inference channel.

Garvey described weighted abductiom, in which the cost of an inference is estimated. This
can be used to characterize the risk of an inference channel. Costs are estimated by assigning
costs to hypothesized assumptions and to inference steps. Thus, the greater the number of
formulas assumed and the greater the number of inference steps, the greater the cost and
the more difficult the inference. If the cost is sufficiently high, it could be argued that the
high information is sufficiently safe from inference by low users. Similarly, Garvey described
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computing the probability that low users can infer high data. A probability channel exists
of the probability exceeds some threshold value. Otherwise, the risk can be considered
sufficiently small Garvey is investigating methods for combining probability with weighted
abduction to compute risks for specific inferences.

Vicky Ashby of MITRE described her examination of many classification guides. She
found that these guides don't provide the detailed guidance that would allow a data designer
to determine the classification of the individual elements and tuples in a multilevel database.
She also found some examples of inference problems in the guides. For example, individual
cargo movements are not classified but the plan that determines them is classified. For
some army systems she found examples of quantity-based aggregation, where, for example,
greater than five records is secret whereas fewer are unclassified. In addition, any aggregate
operation (e.g., sum or average) over greater than five records is also secret.

She presented some solutions that have been proposed for the latter example. All ag-
gregate operators could be disabled for low users or for all users. The aggregate operators
available to low users could be altered so that no more than five records can enter into a com-
putation. Ad hoc queries could be prohibited, and predefined queries could be guaranteed to
follow the classification rules. Bill Maimone of Oracle Corporation suggested auditing low
users and raising an alarm if too many records are requested.

Some felt that the information being protected in this example is not the set of five or
more records but the information that can be inferred form it. The approaches proposed by
Garvey might yield better solutions to such problems.

LouAnna Notargiacomo of MITRE gave a presentation in which she raised issues of
automatic classification using classification constraints. Classification constraints are rules
that would be interpreted and enforced by an expert system or something similar. The use
of classification constraints has been proposed to help users avoid making mistakes when
entering data.

In a high assurance system, the use of classification constraints raises the question of how
to verify the correctness of the rule interpreter and of the rulebase; the theory on which to
base such a verification doesn't exist. Teresa Lunt noted that in addition you need to verify
the rulebase against real-world policy, which is also a hard problem.

Notargiacomo asked what the safe use of classification constraints might be. For example,
their use could be reserved for upgrade and downgrade decisions where a human is in the
loop.

Notargiacomo noted that classification constraints constitute new mandatory policy that
is added to the system after the system has been evaluated. Thus, the addition of rules
that were not present in the original evaluation or changes to the rulebase may invalidate
the previous evaluation or certification. In addition, updating the constraints may require
reevaluating all the labels in the database.

Notargiacomo concluded that the risks associated with the use of classification constraints
must be determined and issues of evaluation, certification, and accreditation must be ad-
dressed before classification constraints can be considered for use.

Rae Burns of MITRE thinks that classification constraints should be internal TCB data
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and not user-visible or labeled. She pointed out that the constraints are not used for labeling
data if they are used as was proposed in SeaView. In SeaView, all data is written at the
subject class, and the constraints merely prevent high users from overclassifying low data.
Thus, if a high user attempts to enter data that should be low the operation is rejected.
Burns also wants to reject the operation or upgrade the data if a low user enters data that
should be high.

With Burns' proposal there are covert channels associated with the enforcement of the
constraints. By observing what's accepted or rejected or disappears by upgrading, low users
can infer the constraints, which may contain sensitive information (for example, all flights
to Baghdad are top secret). A safer choice is to label the constraints, as is done in SeaView.

Tom Garvey noted that Burns is proposing to allow channels to exist as an engineering
expedient. He feels this is dangerous unless you can quantify the risk of the inference channel.

In a session on polyinstantiation, Sushil Jajodia of George Mason University summarized
the sources of polyinstantiation, as identified originally by SeaView. Polyinstantiation can
arise through updates by high users or by low users. In the case of high users, it is possible
to reject an update that would lead to polyinstantiation. However, in the case of low users,
rejecting such an update is an inference'channel. SeaView raised the possibility, which was
later discarded, of allowing low users to overwrite high data rather than to polyinstantiate.

There is currently ongoing research at SRI and independently at George Mason University
to define the behavior desired for the update operation when there is polyinstantiated data
in a relation. Jajodia advocates matching the update predicate on all visible tuples, whereas
SeaView has proposed to update all matching tuples. Bill Maimone pointed out that with
Jajodia's proposal all the visible tuples aren't actually updated because some are polyin-
stantiated when doing otherwise would have violated the *-property. Maimone proposed an
alternative in which the update is rejected if all matching tuples cannot be updated. If a
high user wants to match on only high tuples, thereby ensuring that all matching tuples are
updatable, the user could include "where label = S" in the update predicate. Lunt pointed
out that an unsettling aspect of Jajodia's proposal is that it exhibits the same behavior
whether or not the user includes "where label = S" in the predicate.

Jajodia presented yet another solution, in which a high user logs in at low and marks
low data as 'restricted,' meaning that low users cannot update the data, thereby preventing
low users from inadvertently polyinstantiating the data.

Chip Paradise of MITRE described the Air Force Military Airlift Command's approach
to polyinstantiation in a system they are building. In that application, high data is deemed
to have greater validity than low data. So in the case of polyinstantiation only the high
data is returned to high users. Cover stories are required, for example, a polyinstantiated
Slestination for the same mission ID. There is also a requirement for element-level labels and
for uniformly classified attribute groups, as in SeaView. With uniformly classified attribute
groups, all the elements in the group have the same classification within any given tuple.

In a talk called "The Trouble with Writeup," coauthored with Richard Allen of Oracle,
Bill Maimone spoke about the integrity problems introduced by allowing subjects to write
up. For example, if a low user inserts a high tuple with the same key as a preexisting high
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tuple, the tuple cannot be accepted, but the low user can't be informed of the key conflict.
The tuple can't be polyinstantiated because one already exists at the same security level.

Referential integrity is enforced for insert, update, and delete statements and requires a
writeup by a trusted subject, unless foreign keys are prohibited from referring to data at
higher or lower security levels. Typical options for enforcing referential integrity include the
"restrict" option (data can't be deleted if it is referenced) and the "cascade" option (if a
reference is deleted, all referenced data is also deleted). For example, "on delete cascade"
could be specified for a foreign key in the "create table" statement.

A trigger is code that executes on delete, update, or insert. For example, a trigger could
be defined to execute when the delete command is used for the employees table to raise an
exception if salary > 10000 and name = 'Allen' and to then delete a low department form
the departments table. If there are both high and low employees, this trigger requires a
trusted subject and results in illegal information flow. Thus, we can't let the average user
create triggers. Even if triggers don't write low data based on the values of high data, they
can result in covert channels if they are allowed to write up. This is because if a trigger fails,
the transaction should abort. If the failure isn't reported to the user, you sacrifice integrity.

There are similar problems with integrity constraints. Constraints are invariants. If you
can see a constraint then all the data you see should conform to it. If a constraint is added or
modified, all the stored data must be corrected to conform to the new constraints. This can
create covert channels if a constraint relates the values of high and low data or if constraints
are classified higher than the table level. A constraint should be allowed to be classified
higher than the table level only if it includes a predicate such as "where label > secret"
and thus clearly applies only to high data. This points out the need to control who adds or
modifies constraints.

Transactions pose similar problems. If a transaction writes to more than one security
level, we can't allow the transaction level to float up, because we must return information
at both levels about the failure or success of the transaction.

Trusted ORACLE gives users a variety of alternatives. For example, users can opt for
either security or integrity on a table by table basis.

Maimone noted that users are demanding integrity features. He concludes that a strong
concept of integrity implies the need to control writeup. He convincingly demonstrated
that the conflicts between security and integrity are much more complicated than database
designers are expecting.

Dick O'Brien of SCTC raised additional integrity issues concerning the deletion of mul-
tilevel relations. Should we allow a low user to delete a table if it contains high tuples?
He suggested rejecting the operation or alternatively deleting only the high tuples and up-
grading the table definition. He advocates restricting the "drop table" privilege to database
administrators. Someone noted ',hat Sybase took the "drop table" command out-of its SQL
and allows only system administrators to delete tables. In ORACLE, only the table owner
can delete the table and must have read/write permission to all data in the table. This could
result in a situation in which no one is authorized to delete the table, if the owner is not
cleared for all the data in the table.
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Cynthia Irvine of Gemini Computers described an approach Gemini is taking to evaluate
a database system under the TNI rather than the TDI. With this approach, if the system
component that enforces mandatory security is A1 and the other TCB components are C2+
(C2 assurance with some additional functionality), the overall system can receive an Al
rating under the TNI. Gemini is currently working on the GEMSOS M-component evaluation
under the TNI.

Ravi Sandhu of George Mason University gave a talk called "Evaluation by Parts, or is
the TDI Possible" in which he commented that our understanding of evaluation by parts
is very primitive; the TDI won't be the last word on it. There are currently two notions
of evaluation by parts: the TDI's layered composition, called TCB subsets, and the TNI's
composition of disjoint components. The idea is that the various TCB components can be
independently evaluated and composed into a system.

The TDI contains two varieties of TCB subsets, which it calls constrained and uncon-
strained. Constrained TCB subsets have no trusted subjects outside, whereas unconstrained
subsets may. With unconstrained TCB subsets, evaluation by parts is problematic; the sys-
tem as a whole must be reanalyzed with respect to penetration testing and covert channel
analysis. This reflects the fact that the addition of a trusted subject to an evaluated system
invalidates its rating.

With TCB subsets, each subset enforces its own security policy, and the "higher" subsets
rely on the "lower" subsets for correct enforcement of their policies. For the TDI, typically
the "higher" subset is the database system TCB and the "lower" subset is the operating
system TCB. Prior evaluation of the lower subset tells you nothing about its correctness,
for example, that user data stored is maintained correctly. Thus if the higher subset's
policy enforcement data is stored as user data with respect to the lower subset, the system
cannot guarantee the correct enforcement of the higher subset's policy. This applies to the
unconstrained TCB subset approach to database systems, in which the multilevel database
is stored in system-high files. Thus, in addition to flow properties, correctness properties
of the lower subset must also be demonstrated to support evaluation by parts. Such a
demonstration will not have been included in an Orange Book evaluation.

Ira Greenberg of SRI discussed how to provide secure concurrency control for multilevel
databases without using trusted code. He showed that serializability is achievable under
these constraints, but the solutions have undesirable properties (for- example, high users
get arbitrarily old versions of low data). He proposed new correctness criteria as follows:
single-level serializability at each security level; single-level read consistency (consistency
when reading related low data); progress (you should see a version at least as new as any
version seen before); and recency (you see the most recent committed version). These provide
security with most of the guarantees of serializability but with better performance.

In closing remarks, Joe Giordano of Rome Laboratory noted that the 1982 Summer Study
agenda will be completed with the SeaView prototype delivery, expected soon. It is time to
propose a new research agenda for the coming decade. This will be the topic for the fifth
Rome Laboratory sponsored workshop, to be held in October 1992.
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SECTION 2

APPROACHES TO INFERENCE CONTROL

The risk of unauthorized inference remains a major concern for multilevel database
applications. In his paper "Aggregation and Inference Problems in Multilevel Secure
Systems," Sushil Jajodia provides an overview of the inference problem and some of the
approaches that have been proposed to reduce the risk of disclosure from inference.
Garvey, Lunt, and Stickel explore a new perspective on inference through formalisms derived
from artificial intelligence. Their paper "Characterizing and Reasoning about Inference
Channels" describes the use of logical reasoning techniques to study several database
inference problems. Finally, T. Y. Lin and Yazun Al-Eifan analyze an approach to
aggregation in their paper "Entropy, Ordering, and Aggregation." This approach applies the
concept finite entropy to provide randomness of ordering within aggregations.
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AGGREGATION AND INFERENCE PROBLEMS
IN MULTILEVEL SECURE SYSTEMS

Sushil Jajodia

Department of Information and Software Systems Engineering
George Mason University, Fairfax, VA 22030-4444

1. INTRODUCTION

A multilevel database management system (DBMS) contains data that are classified
at different security levels. All database users are also assigned security clearances, and
it is the responsibility of a multilevel secure DBMS to assure that all users gain access to
only those data for which they have the appropriate clearance. The rules that govern
how a secure DBMS controls access to data are 1cr wn as the system's security policy.

All multilevel secure DBMSs that have been designed and are currently being built
enforce a suitable interpretation of the DoD security policy, and in [1] DoD established a
metric against which various computers systev-ý can be evaluated for security. It
developed a number of levels, A1, B3, B2, BI, C2, Cl, and D, and for each level, it listed
a set of requirements that a system must have to achieve that level of security. Briefly,
the D level consists of all systems which are not secure enough to qualify for any of A, B,
or C levels. Systems at levels Cl and C2 ,;ovide discretionary protection of data, sys-
tems at level BI provide mandatory access controls, and systems at levels B2 or above
provide increasing assurance, in particular against covert channels. The level Al which
is most rigid requires verified protection of data.

We will see below that the inference problems are different from covert channels.
Thus, even if a DBMS meets all requirements for the level Al, it does not protect data
from all inf6rmation flows that violate the security policy.

In this paper, we will examine the various kinds of inference threats that arise in a
multilevel secure database system. We will characterize the inference problem as well as
survey methods that have been developed for dealing with it.

1.1. THE INFERENCE PROBLEM

In a DBMS, it is possible for users to to draw inferences from the information they
obtain from the database. The inference could be derived purely from the data obtained
from the database system, or it could additionally depend on some prior knowledge
which was obtained by users from outside the database system. An inference becomes a
problem in a multile-.vel secure system when more highly classified information can be
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inferred from less classified information. Therefore, a secure DBMS needs to provide
inference control: Some item of more highly classified information cannot be inferred
by combining less classified data.

There are two other related problems, aggregation problem and data association
problem, which are defined as follows:

An aggregation problem occurs whenever there is a collection of data items that is
classified at a higher level than the levels of individual data items by themselves. The
classic example is that of an organization whose telephone directory in its entirety is
classified while individual listings are unclassified.

A data association problem occurs whenever two values seen together are classified
at a higher level than the classification of either value individually. As an example, the
list consisting of the names of all employees and the list containing all employee salaries
are unclassified, while a combined list giving employee names with their salaries is
classified. Notice that the data association problem is different from the aggregation
problem since what is really sensitive is not the aggregate of the two lists, but the exact
association giving an employee name and his or her salary.

According to our definitions, the inference problem encompasses both the aggrega-
tion problem and the data association problem. Also, note that inference problems are
different from covert channels since an inference requires an active agent at the low
level, while a covert channel requires two active agents, one at the low level and the
other at the high level, and an encoding scheme.

There are many difficulties associated with determining when more highly classified
information can be inferred from less classified information. The biggest problem is that
it is impossible to determine precisely what a user "knows." The problem is at least
manageable if we adopt the closed-world assumption and assume that if information Y
can be derived using information X, then both X and Y are contained in the database. By
ruling out inferences that lie outside the database, the closed-world assumption provides
a structured framework withia which we can look for inference problems [10]. However,
the outside knowledge that users have plays a significant role if we wish to take all infer-
ences into account.

2. SOLUTIONS TO THE INFERENCE PROBLEMS

Inference control methods can be broadly classified into one of following three
categories:

"* Inference Prevention Methods. The methods in this category guarantee that
inference problems cannot occur in the first place.

"* Inference Detection an 'Resolution Methods. These methods detect potential
inference problems in advi•ce and take steps so they will not occur.

"* Limited Inference Methods. Unlike the methods in the previous two
categories, methods in this category allow inferences to occur, but these
methods limit their bandwidth. These methods are useful in situations where
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either the amount of inference is so small that it does not pose any threat or
where the inference bandwidth is quite smal, but it is too expensive or not
desirable to close.

2.1. Inference Prevention Methods

2.1.1. Appropriate Labeling of Data and Integrity Constraints

If information x permits disclosure of information y, one way to prevent this is to
reclassify all or part of information x such that it is no longer possible to derive y from
the disclosed subset of x. To illustrate, suppose that an attribute A is Unclassified while
attribute B is Secret. Suppose the database enforces the constraint A + B < 20 which is
made available to Unclassified users. The value of B does not affect the value of A
directly, but it does determine the set of possible values A can take. Thus we have an
inference problem.

There are two ways to deal with the violations of this type. We have to reclassify
either the data or the constraints appropriately. To this end, semantic database model
techniques have been used to determine appropriate classification of data and integrity
constraints [4, 12, 18]. Conventional data models (such as hierarchical, network, and
relational data models) use overly simple data structures (such as trees, graphs, or tables)
to model an application environment. Semantic database models, on the other hand,
attempt to capture more of the meaning of the data by providing a richer set of modeling
constructs. Since integrity and secrecy constraints can be expressed naturally in seman-
tic database models (see [18]), they can be used to detect inference problems during the
database design phase.

2.2. Inference Detection and Resolution Methods

Many inference violations arise as a result of a query which asks for the data which
are at the user level, but its evaluation requires accessing data which are above the user's
level. As an example, suppose that data are classified at the relation level, and that we
have two relations, an Unclassified relation, called EP, with attributes EMPLOYEE-
NAME and PROJECT-NAME, and a Secret relation, called PT, with attributes
PROJECT-NAME and PROJECT-TYPE, where EMPLOYEE-NAME is the key of the
first relation and PROJECT-NAME is the key of the second. (The existence of the rela-
tion scheme PT is Unclassified.) Suppose an Unclassified user makes the following SQL
query:

SELECT EP.EMPLOYEE-NAME
FROM EP, PT
WHERE EP.PROJECT-NAME = PT.PROJECT-NAME
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If this query is evaluated by taking the natural join of the two relations, EP and PT,
along PROJECT-NAME, and then projecting along EMPLOYEE-NAME, we have an
inference problem, even though only the unclassified data (employee names) is being
returned to the user. Although the output of this query is unclassified, it reveals classified
information.

One method that can be used to inference violations of this sort is query restriction.
If the system can ensure that all data used in the process of evaluating the query is dom-
inated by the level of the user, then these inference violations cannot occur. To this end,
the system can either modify the user query such that the query involves only the author-
ized data or simply abort the query.

Polyinstantiation is another technique that can be used to prevent inference viola-
tions [11]. To illustrate, suppose a low security-class user wants to enter a tuple in a rela-
tion in which the data are classified at the either the tuple or element level. Whenever a
tuple with the same key at a higher security class already exits in the relation, both tuples
are allowed to exist, but the security class is treated as part of the key. Thus the tuple
entered at the low security class and the tuple entered at the higher security class will
always have different keys, since the keys will have different security classes.

Finally, auditing can be used to control inferences. For instance, a history can be
kept of all queries made by a user. Whenever the user makes a query, the history is
analyzed to determine whether the response to this query when correlated with the
responses to earlier queries could result in an inference violation. If a violation could
arise, the systems can take appropriate action (for example, abort the query).

There is a side-benefit of this approach: it may deter many inference attacks by
threatening discovery of violations. There are two disadvantages of this approach: One,
it may be too cumbersome to be useful in practical situation. Two, it can detect a very
limited types of inferences (since it is based on the hypothesis that a violation can always
be detected by analyzing the audit records for abnormal behavior.)

2.3. Allowing Limited Inferences

So far we have mainly considered various means for eliminating all inferences.
There are situations where it is possible to allow limited inferences. These methods are
useful in those cases in which the inference bandwidth is so small that these violations do
not pose any threat. Consider the following example. Suppose that data are classified at
the attribute (column) level, and that we have two relations, one with the Unclassified
attribute PLANE and Secret attribute DESTINATION, and another with the Unclassified
attribute DESTINATION and Unclassified attribute FUEL-NEEDED. Suppose also that,
although knowledge of the fuel needed for a particular plane can give information about
the destination of the plane, there are too many destinations requiring the same amount of
fuel for this to be a serious inference threat. Moreover, we do not want to go to the trou-
ble of of clearing everybody responsible for fueling the plane to the Secret level. Thus
we wish to make the derived relation with attributes PLANE and FUEL-NEEDED avail-
able to Confidential users.
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Even though we have decided that this information does not provide a serious infer-
ence threat, we cannot allow users to perform the natural join and projection themselves,
since it may provide a signaling channel. One solution is to use the "snapshot
approach:" a trusted user creates a derived Secret relation with attributes PLANE and
FUEL-NEEDED and then downgrade it to Confidential. Although this "snapshot" can-
not be updated automatically without opening a signaling channel, it can be kept more or
less up-to-date by having the trusted user re-create it from time to time.

A "snapshot" or a "sanitized file" is an important technique for controlling infer-
ences, especially in offline, static databases. In particular, it has been used quite
effectively by the United States Bureau of the Census [5,6,7].

3. CONCLUSION

A great deal of work has been performed in the inference area. Most of the
research dealt with statistical databases (see [2] or [7]). More recently researchers have
been looking into techniques to deal with the inference problem in databases. In addition
to the references listed above, see also [3,8,10,9,13,14,15,16,17,19,20]. Although
these methods can be extremely useful, a complete and applicable solution to the infer-
ence problem remains an elusive goal, and the inference problem should generally be
viewed as being an open question.
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1 Introduction

In this paper, we attempt to relate certain formalisms used for reasoning problems in artificial
intelligence (AI) to inferential security problems that arise in multilevel security for databases
and knowledge bases. Inferential security remains one of the most critical and challenging
problems to the database community and is destined to become more significant with the
introduction of knowledge-based systems with their correspondingly richer relations among
data and information. Here, we present a formalism for characterizing inferential problems
of different ,ypes based on formal logical reasoning and theories for approximate reasoning.
We believe the essence of inferential security problems are well captured by these formalisms.

2 Logical Formalisms for the Inference Problem

In multilevel databases, the inference problem is when some set of data classified at a low
level (or low data) can be used to infer data classified at a high level (hereinafter referred to
as high data). That is, there is a direct inference path (possibly including external data) from
the low data to the high data. In order to develop automated methods for recognizing and
eliminating inference channels, we require a formalization of the problem. The formalization
suggested here is based on methods of formal logic and theories of approximate reasoning.

We characterize inferential security problems as belonging to one of three distinct types,
based on the degree to which high data may be inferred from low data. The most restrictive
type of channel occurs when a formal deductive proof of the high data can be derived from
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the low data-when this is the case, we say that a logical inference channel (or a logical
channel) exists. A slightly weaker form of a channel is when a deductive proof may not
be possible but a proof could be completed by assuming certain axioms. In this case, an
abductive proof is possible, and we will term the channel an abductive inference channel (or
an abductive channel). The final situation we will consider is when it is possible to determine
likelihoods that assumed axioms might be knowable by a user with legitimate access to low
data that would enable the inference of of high data with some measure of belief greater than
an acceptable limit. In this case, we will (loosely) call the channel a probabilistic inference
channel or just a probabilistic channel.

Logical channels can be described by standard propositional logic (PL) or first-order
predicate logic (FOL). Most database systems may be modeled using PL while knowledge-
based systems, which may allow for universally quantified expressions, 1 can be modeled using
FOL (in this paper, we will use the terms database and knowledge base interchangeably). If
PL is applicable, determining whether a logical channel exists is a decidable proposition but
may be quite expensive. In the more general case of FOL, the question is not decidable:
there is no way of knowing whether a logical channel exists until one is found. Since, in
general, logical channels must not involve assumptions of facts, they must be based entirely
on data found within the database.

Abductive channels represent a much more serious issue, since most inferential channels
exist as the result of knowledge that a normal user might be expected to contribute to the
problem but that is not an explicit part of the data or knowledge base. An abductive proof,
however, can include assumptions and can consider the degree to which a user is likely to
know some fact necessary to the completion of a proof. Since abduction involves assumptions
about the user's belief structure, it involves modal logics, particularly epistemic logics.

A variety of schemes have been devised to determine the cost of an abductive proof [19,
201. These typically include a cost (weight) for each additional proof step and a cost as-
sociated with an assumption. SRI has developed an abductive theorem prover (ATP) as
an extension to Prolog that allows setting these weights as appropriate for the problem of
interest. Setting assumption costs high relative to proof steps leads the ATP to prefer deeper
proofs with fewer assumptions. Setting the assumption costs to infinity leads to standard
theorem proving. Setting them low causes the ATP to prefer assumptions.

One means of setting these costs is to consider the likelihood that a particular user
might know the assumed facts. Assumption costs could be related to these likelihoods, and
the overall cost of the proof would then be a function of these probabilities.2 A variety
of computational schemes, based on classical probabilities [12], belief functions [13, 8], or
fuzzy logic [14], could be considered for the task of determining the cost of an abductive
proof incorporating beliefs. Using a formal theory for approximate reasoning would allow
the computed cost to reflect the likelihood that high data could be inferred by a low user
with ordinary or particular knowledge.

1Such as rules of the form, FOR ALL Z, p(Z) IS TRUE. For example, ALL BIRDS CAN FLY.2Such probabilities over states of belief are often referred to as epistemic probabilities 18].
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In the remainder of this paper, we first present a general approach to the inference
problem in multilevel databases, then we provide some background information on abductive
and approximate reasoning, and finally we show how these techniques may be applied to
detecting potential inference problems.

3 Inference Using External Data

Many inference problems can be solved through appropriate design and classification of the
data structures in the database [4]. For example, consider a database containing personnel
information, including names, addresses, and salaries of employees. Suppose that names,
addresses, and salaries are all UNCLASSIFIED, but that names and salaries taken together are
SECRET - that is, the association of a salary with an individual is SECRET. This problem
is easily solved by the following data design

EMPLOYEES(EMP#, NAME, ADDRESS)

SALARIES(S#, SALARY)

EMP-SALARIES(EMP#, S#)

where the EMPLOYEES and SALARIES relations are both UNCLASSIFIED but the EMP-SALARIES

relation is SECRET. Because there is no way to meaningfully join EMPLOYEES and SALARIES

to match a salary with a name, the sensitive relation, represented by the relation EMP-

SALARIES, is protected from uncleared users.
Now suppose that we have the above "safe" set of relations, and we want to add a new

attribute, employee start date (which is not sensitive), to the database. It seems to make
sense to add it to the SALARIES relation, as follows:

EMPLOYEES(EMP#, NAME, ADDRESS)

SALARIES(S #, SALARY, START-DATE)

EMP-SALARIES(EMP#, S#)

However, an employee's start date is an easily observable or discoverable attribute of an
employee. Thus, an employee's identity may be inferred (or partially inferred) from his
or her start date. This means that the sensitive relationship between an employee's name
and his or her salary may be compromised. This problem can be removed in several ways.
One way is to add the attribute START-DATE to the EMPLOYEES relation rather than to
the SALARIES relation. Another way is to create a separate (unclassified) relation HIRE-

DATES(EMP#, START-DATE). Note that EMP# rather than S# must be used as the key for
the new relation, otherwise the inference is not removed. So we need to know what attributes
act as such "almost keys" (also termed identificates [11]), or attributes that allow partial
inference of the individual identifying information, and understand how these contribute to
making inferences.

The fact that the SECRET relationship between employee name and salary is inferrable
can be determined through analysis of the data structures and security constraints that would
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normally be part of a multilevel database. However,. inference problems cannot always be
detected using only the information stored in the database. For example, to solve the second
problem above, we need to know that employee name can be inferred from START-DATE, a
piece of information that would not normally be stored in the database.

4 Abductive Reasoning

Here we present a brief overview of abduction, a form of reasoning we believe to be particu-
larly appropriate for formulating the database inference problem and for designing automated
tools for detecting inference channels. Abduction has traditionally been applied to diagnos-
tic tasks [15, 16, 17, 18] that reason from events to causes. If Q is observed and needs to be
explained and P D Q is known, then P can be offered as a possible explanation of Q.

Deductive reasoning is the process of demonstrating that a formula is a consequence of a
theory: T F- Q. Abductive reasoning is a distinctly different form of reasoning from deduction
and is not limited to demonstrating that a formula is a consequence of a theory. In abductive
reasoning, the objective is to find assumptions A such that T U A I- Q even though Q may
not be provable from T alone.

A large difference between abductive and deductive reasoning is the desire to discover
the best abductive explanation. Many sets of assumptions may explain a phenonomenon,
but some are preferable. Preferred explanations must often be chosen in an application-
dependent, heuristic way.

In using an ATP for inference channel detection, high facts would become theorems to
be proved. The ATP would back-chain through inference rules to low data (which would
become the proof axioms) or to assumptions. No assumption would be permitted that was
already present as a high fact. Acceptable assumptions proposed for a proof would need to
be evaluated by the database security manager to determine the degree to which they may
be known to low users.

To control the depth of the proof, we can provide a cost structure that allocates a cost
value to each proof step and a cost to assumptions. By making the assumption cost high
relative to the proof-step cost, we make the theorem prover favor deeper proofs. Alterna-
tively, low assumption costs lead to relatively shallow proofs. From an informal point of
view, an ATP used for detecting inference channels should have a cost for proof steps chosen
to cause it to search moderately deeply for logical channels (i.e., channels that do not require
assumptions), but not too deeply. The deeper the proof required, the more work a user will
have to put into the deduction, and therefore, the less likely (or the lower the bandwidth of)
the channel.

5 Abductive Reasoning about Inference Channels
In trhe above example, a naive data designer may have defined the data structures as follows.
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EMPLOYEES(EMP#, NAME, ADDRESS)

SALARIES(S#, SALARY, START-DATE)

EMP-SALARIES(EMP#, S#)

Thus, each employee a has the following attributes:

name(a)
address(a)
salary(a)
start-date(a)
emp#(a) (database record identifier)
s#(a) (database record identifier)

The database is organized in an effort to keep salary(a) secret. This is done by associating
employee records identified by emp#(a) and salary records identified by s#(a) in the secret
relation EMP-SALARIES.

The following functions, among others, are determined by the unclassified EMPLOYEES
and SALARIES relations.

employees12(u) = {v I 3w E EMPLOYEES(u, v, w)}
employees 13(u) = {w 13v E EMPLOYEES(u,u,w)}
employees 21(v) = {u I 3w E EMPLOYEES(u,v,w)}
salaries12 (X) = {y 3z E SALARIES(x,y,z)}
salariesl3(X) = {z 1 3 y E SALARIES(x,y,Z)}
salaries 31(z) = {x 13y E SALARIES(x,y,z)}
salaries32 (z) = {y I 3x E SALARIES(x, y, z)}

The functions employees12, employees 13, salaries 12, and salaries 13 are singleton-set valued,
since their domains are unique primary keys for the EMPLOYEES and SALARIES relations.
The expression employees 21(name(a)) identifies a set of possible values of emp#(a) and
salaries 31(start-date(a)) identifies a set of possible values of s#(a).

The security restriction on the database is violated if an unclassified user can infer el-
ements of the EMP-SALARIES relation. We would like to be sure the statement -,Know
emp-salaries(u, z) is true. A proof of Possibly Know emp-salaries(u, x) would prove
that security might be violated.3 An abductive proof would create sets of assumptions that
are sufficient to prove that security might be compromised if the assumptions are true. These
assumptions can then be evaluated for plausibility. An abductive proof can be generated by
backward chaining from the formula we wish to prove and treating as assumptions formulas
we cannot prove.

3Modal logic operators like Possibly and Know are necessary to adequately express uncertainty and
knowledge. For example, it is necessary to distinguish between the similar expressions 3 y Know salary(a) =
y (I know a's salary) and Know 3y salary(a) = y (I know a has a salary). These sorts of distinctions are
difficult to make in classical logic.

21



We give here an informal proof that elements of the intended-to-be-secret EMP-SALARIES

relation might be knowable.
If the sets of possible values for emp#(a) and s#(a) are small, then Possibly Know

emp-salaries(u,x), where u = emp#(a) and x = s#(a). Formally,

3U small(U) A Know emp#(a) E U A
3X small(X) A Know s#(a) E X

D Possibly Know emp-salaries(emp#(a), s#(a))

Thus, for the goal

Possibly Know emp-salaries(emp#(a), s#(a))

we have the subgoals:

Know emp#(a) E U
Know s#(a) E X
small(U)
small(X)

The employee 21 and salaries31 functions can produce sets U and X that satisfy the first
two subgoals, yielding the following set of subgoals:

Know name(a) = n
Know start-date(a) = s
small(employee2l(n))
small(salaries3 1 (s))

At this point our abductive proof is complete. We have proved that if an employee's name
and start-date are known, and if the number of possible EMP# and s# values computed
from them is small (and certainly if they are both singleton sets), then we might know EMP-

SALARIES(EMP#,S#) in the secret relation. Because these are all plausible assumptions, we
must conclude that the database design is not secure.

The problem is even easier if formalized differently. Suppose instead we merely wish to
keep secret the attribute salary(a). It can be abductively proven that a's salary might be
known (3y PossiblyKnow salary(a) = y) if a's start-date is known and salaries32(start-date(a))
is a small set.

This simple example illustrates the general concept presented here. Our invtestigations
of this formalism will, we hope, lead to the development of database design tools so that a
proposed database design can be analyzed for inference channels and r,.st-ructured so that
the problems are eliminated or minimized.
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6 Approximate Reasoning

Inference problems arise when it is possible for a user to use low data to infer the truth
of high data with some degree of probability. For example, flight-destination airports may
be sensitive data, while aircraft range, payloads, and departure fields may be stored at a
low security level. By combining information about range, payloads, and departure fields,
a user may be able to greatly narrow the set of possible destination airports, and in so
doing increase the likelihood that an aircraft's destination is among the reduced set. Further
information (say, data about the aircraft-handling capabilities of the airfields in the reduced
set) may serve to reduce the space of possibilities even more.

Such probabilistic channels are related to abductive channels because the assumptions
and logical rules used in an abductive proof may have degrees of belief associated with them
which represent the likelihood that they may be known to a user. These degrees of belief
can then be propagated through the abductive proof tree to determine the degree to which
the user is likely to be able to infer the high data in question. In effect, the ATP can be used
to uncover the existence of a channel and approximate reasoning methods used to evaluate
the relative seriousness of the channel.

Several schemes have been proposed to address the problem of quantifying the risk to
security. Early work [5, 6] took the approach of characterizing the inferential closure of a
core of unclassified information, with the aim of determining whether any classified informa-
tion fell within the closure. When this occurs, an inference channel exists. The inferential
closure includes all statements for which the relative change from the prior likelihood for the
statement (modeled by its entropy) given statements in the unclassified core is greater than
some present threshhold. The threshhold is a parameter that will determine the size of the
closure. This work, while theoretically appealing, has proven impractical to implement.

An approach based on Bayesian probability [1] has been proposed as a more practical
approach to estimating the security risk due to partial inferences. This approach is appealing
except that it requires a great deal of probabilistic information, which is typically quite hard
to estimate precisely [2, 8, 7, 9, 10]. Evidential reasoning (ER), based on the Shafer-Dempster
Theory of Evidence, a non-Bayesian uncertainty theory, offers an alternative formalization
that avoids these difficulties [13, 71.

6.1 Evidential Reasoning for Partial Inference

Evidential reasoning departs from classical probability theory in that it permits beliefs to be
attached to disjunctions of statements, rather than requiring they be assigned to singletons
in the universe of discourse (the set of mutually exclusive and exhaustive statements that
form the "vocabulary" for the problem statement). In ER, this mutually exclusive and
exhaustive set of concepts of interest is called the frame-of-discernment (or just the frame)
and is designated E. Propositions are made up of elements of the set of all subsets of 0,
indicated by 2 9. Belief can be assigned to any proposition, including E itself; any belief
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assigned to E expresses total ignorance to that extent. An evidential mass function (or just
mass function) represents the distribut; -n of a unit of belief across selected (focal) elements
of 2 '. A body of evidcnce is the frame of discernment and a particular mass function.

For example, we ,.iay know that a particular aircraft, because of its range and location,
may be able to fly to a set of airports. When considering which airport it is really going
to fly to, we can it' ntify the destination only as a member of this set. Therefore, we may
assign our belief about the plane's destination to the set of possibilities. In a Bayesian
framework, we would be forced to distribute this belief to the individual elements of the set
(thereby introducing new "information" into the process); in evidential reasoning we are not
forced to make this distribution. This approach avoids the need for assumptions for values
of missing data. When beliefs of components are later needed, they are underconstrained
as a result of the disjunction, and an interval representation is needed to capture the true
constraints. This interval enables the explicit modeling of both what is known (although
with uncertainty) and what is unknown. The approach is valuable for representing human
expertise where the available knowledge is likely to be imprecise and not well modeled by
precise probability values.

Evidential reasoning provides an advantage over standard probability mechanisms in that
prior probability distributions are not required in order to compute the likelihood resulting
from combined bodies of evidence. This information :- -:n irnavailable in any event, but
when it is available, evidential -.,asoning treats it z._ any other knowledge source.

For inference control, an abductive pruof structure combined with information about
the likelihood that a user might know facts assumed in the proof can be used to calculate
the lkelihood that the user could infer high dat.4 ,. Furthermore, sensitivity analyses can be
carried out over the information structure in order to determine which information has had
the greatest impact on the inference. This information might then be an initial candidate
for upgrading in order to eliminate the channel.

Evidential reasoning techniques have been automated in a system called Gister [3].

7 Summary

We have formulated the inferential security problem as a problem in logical reasoning, specif-
ically as a problem of attempting to determine whether there exists an inferential chain from
low data to high data, possibly involving low data and inference rules that are not explicitly
represented in the database itself. We have further suggested a new taxonomy of inference
channels - the logicai channel, the abductive channel, and the probabilistic channel -
based on the reasoning process most appropriate to the particular inference problem. The
application of abductive reasoning also offers a computational mechanism for detecting in-
ference channels in databases. We feel that, as a logical formalism, abduction is the most
appropriate model for most inference "channels involving strictly logical inferences. We identi-
fied probabilistic channels as another important class of inference channels, those associated
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with the likelihood of inferring high data from low data that a user might be likely to know
with some probability. We offer evidential reasoning as a candidate technology that could be
linked with abduction to provide an effective computational framework for reasoning about
such probabilities.

The formalisms proposed here can lead to a better understandir.g of the inference problem
itself and to potentially practical solutions.
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1. INTRODUCTION

Defending against human reasoning has drawn considerable amount
of interests in the community of database security. (Denn86a-b],
[Denn87a-b], [Denn88a-b], [Dill88], (Hink88], [Lin89c],
[Lin90a,d], [Lin9la,c), [Lunt89a], (Garv9l], (Stac88], (SuOz87],
[SuOz89]. [Thur87], [Thur90]. These works have been concentrated
on the reasoning that comes from formal logic (e.g., deduction
and abduction). In this paper, we enter into the territory of
defending against the so called plausible reasoning [Poly68] or
"educated guess" in laymen's term.

Aggregation exists if the aggregation of data has a higher
sensitivity than each of the components considered separately. The
famous phone book problem is the classical example; the phone
number of an individual is not sensitive, but the entire phone book
is sensitive. In this paper, we consider another type of
aggregation problem in which the collection of the individual phone
number in "random order" may not be sensitive, but the entire phone
book in "particular order" is highly sensitive. According to the
current definition, this is an aggregation problem; however, this
type of aggregation may not be the examples that was intended to be
covered.

In [Lunt89], Lunt gave a concise illustration on various problems
surrounding the notion of storing the sensitive association high.
"The sensitive association will be compromised if the employee
and salary records are both sorted in the same order ... need to
be further studied." Here, she has clearly spelled out the
importance of the ordering. If the database security community
decides to store association high and data low, then this paper
offers a possible theory to accomplished it. Present theory has its
own interests, it is closely related to the problem of encryption.
We will report on this-in near future.

* This paper contains part of Ph. D. dissertation of first author
at IIT supervised under J. Kenevan and T.Y.Lin.
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Classically, there are two type of measures on the ordering. One
is the entropy, another is Kolmogorov complexity (Algorithmic
information theory). Due to Chaiten's Godel type incompleteness
results [Chai87a,b), most likely there will not be able to use
Kolmogorov's complexity directly as a measurement for real life
problems. So entropy is our choice. There are various form of
entropy. In statistical mechanics, information theory, entropy is
defined in terms of probability. While in ergodic theory, measure
theory are used to define the entropy (Probability is a special
case of measure theory). In (topological) dynamical systems, one
defines entropy in terms of open covering. In our applications,
there is no natural probability in our setting, but there is a
natural measure, namely the counting measure. So we adopt the
entropy in ergodic theory as our guiding example. The entropy in
ergodic theory is designed to study the infinite mathematical
world, we have to adopt it to the finite world. In [Lin90], we have
some preliminary report on such entropy -- call it finite entropy.
In terms of finite entropy, we propose "quasi Kolmogorov
randomness" as an alternative for Kolmogorov randomness. However,
the main theme of this paper is on the computation of the entropy.
From our computation, finite entropy seems capture the intuitive
notion of randomness.

The permutation below is the result of permuting 1,2,3,4,5.

Permutation:l,2,3,4,5; Entropy= 2.0250 - No moves
Permutation:l,2,3,5,4; Entropy= 1.1676 - 2 moves
Permutation:l,2,5,3,4; Entropy= 0.4609 - 3 moves
Permutation:l,5,2,3,4; Entropy= 0.1723 - 4 moves
Permutation:4,5,1,2,3; Entropy= 0.0000 - 5 moves

This paper is a coninuation of previous report on finite entropy
[Lin90], for completeness, we will present this paper as a complete
paper, readers who accepted the notion of ordered aggregation or
familiar with [Lin9O] may skip part of Section 2 (motivational
examples) and 3 (important issues in the ordered aggregations), and
go directly to the computation.

2. EXAMPLES

Example 2.1

Message LOC:

"The location of the essential information of the secret particle
beam weapon is indicated in the painting of the statue of
liberty hanged on the west wall of the east room of the south
wing of the north complex of the state building".

The message LOC is sensitive, however, its alphabetical order
is hardly sensitive. In general, a collection of words (or
characters) in "wrong" order does not carry the same sensitive
information.
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This message is an aggregation problem, since each word (or
character) is obviously unclassified, but the whole collection (in
some order) is highly sensitive. However, it is quite different
from the usual aggregation, because the "wrong"
order is not necessary sensitive. We call such non-commutative
type of aggregates ordered aggregates.

To convince readers and ourselves, let us examine the effect of
classical solution to this problem.

(a) SeaView's solution (Lunt69]: Each individual words is
upgraded to the text level.

(b) LDV's solution: Part of the text can be released, however,
the whole text will be protected.

(c) Hinke's solution: Some words will be upgraded to the level of
the text.

(d) Lin's solution [Lin89,90a,b]: No users are allowed to see any
individual word, same effe.,;t as SeaView.

(e) Lin's (fuzzy set) solution [Lin90b]: There is a probability
(or possibility) distribution on every aggregates. Applying that
solution, some individual words can be released until the Counter
reaches threshold.

Let us examine, how one can try to use these solutions to send a
message in a network. Typically, the communication lines uses
public phone lines, where the physical security is practically
none. So one has to assume that a message between computers is
available to the public.

1. If one uses solutions (a) or (d), no single words can be sent
out.

2. If one uses solutions (c), few key words can not be sent out.

3. If one uses solutions (b) or (e), many words can be sent out
until some threshhold is reached.

Any of these five solutions can not be used to send a message.
However, we can accomplish the task with the notion of ordered
aggregation; send the message with a random permutations.

One may argue that such communication can be done by encryption; we
agree. Intrinsically, encryption is a means to hide information in
the order; it is the same notion as ordered aggregation. However,
we should like to point out that the notion of ordering has not
been adequately discussed in the theory of cryptography. In
traditional cryptography, the emphasis is on searching an "inverse
algorithm" of an encryption, there is no systematic efforts to
guard against a decryption by the meaning of data [Denn90]. To
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"destroy" the meaning of data, we need to permute the data
randomly. This consideration had never been dicussed adequately in
cryptography. Our research is overlapping with the "foundation" of
cryptography, we will have reports on this issue in near future.

Example 2.2. If salary and name are both sorted in the same order,
users can easily "guess" his coworkers salary. Hence the sensitive
association will be compromised. To hide this senstive association,
we need to randomly permute one of the attribute.

These examples, lead us to a serious consideration of the notion of
randmness. Fortunately, there are many theory of randomness.
Entropy or Kolmogorov randomness are most well known measurement of
randomness. In view of Chaiten's results, for practical purpose,
some modification is necessary. Via entropy, we propose the notion
of quasi-Kolmogorov randomness.

As we have remarked at the introduction, there are many forms of
entropy. Since the entropy in ergodic theory is closes to us, we
will adopt the entropy from ergodic theory. In ergodic theory,
the entropy is used to measure the randomness of a transformation
of a space. By regarding a permutation of a message as a
transformation of information, we can adopt the entropy in
ergodic theory to measure the degree of "distortion" of a
text. In fact, we can view the sentence structure (paragraph,
sentence ... ) as a partition of message, so we will use finite
entropy, an analogue of entropy, to measure such a distortion
(permutation). (See, e.g., (Perr69) for the notion of ergodic
theory.)

Even though ergodic theory is not necessarily a popular subject
in the community of computer security, we will not give an
exposition on the ergodic theory. Instead, we will develop the
notion of "finite entropy" in detail and occasionally make some
comparison to the approaches in ergodic theory. Roughly, a
"finite entropy" is a finite analogue of the entropy in ergodic
theory. A real entropy of ergodic theory (living in infinite
mathematic world) is always zero on any finite set; so for any
reasonable finite applications, a modification is unavoidable.
Roughly speaking, what we are going to do here is, basically, an
adoption of the methodology in ergodic theory, but not (the
direct applications of) its theorems.

3. PERMUTATION AND RANDOM PERMUTATION

In this section, we summarize some theory on permutations -- an
elementary transformation group theory.

Definition. Let H be a group and Let

HXS ----- >S

be a map such that
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(1) h(k(s)) = (hk)(s) for all s in S,
(2) Id(s) = s for all s in S,

Then such H is called a transformation group on S, or simply, H
has an action on S.

Let S = (1,2,3,..., N) be a set of finite number. Let T be a
permutation of S, i.e., a one-to-one map of S to S. Some special
permutation can be represented by cycles: For example,
let T be a permutation:

1 ---- > 2
2 ---- > 33 ---- > 4
4 ---- > 1
5 ---- > 5
6 ---- > 6

N ---- > N

The permutation T sends 1 to 2, 2 to 3, 3 to 4, then 4 is sent
back to 1. Any numbers above 4 are fixed. Sucb a permutation is
called a cycle and is denoted by (1234). Thd degree of (1234) is
4. These can be found in any standard abstract algebra book
[Jacob56]. One can also find there the following theorem:

Proposition: Every permutation can be decomposed into cycles.

We will call such decomposition cycle decomposition.

Example: Let S = (1,2,3,4,5,6,7,8,9), let the permutation T be:

1 ---- >7
2 ---- > 5
3 ---- > 8
4 ---- > 2
5 ---- > 4
6 ---- > 6
7 ---- > 1
8 ---- > 3
9 ---- > 9

Then T = (17)(254)(38)(6)(9). Normally, the cycle with one
element is suppressed, namely, T = (17)(254)(38). Here (17)
means 1 to 7 and 7 to 1. Similarly, (254) means 2 to 5, 5 to 4
and 4 to 2.

Definition: An orbit of H acting on S is an equivalence class of

S with respect to the equivalence relation,

s is equivalent to r

iff there is an h in H such that h(s)=h(r).

By adopting, say Fortran's notation, we will denote nth power of
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T, by T**n. The power of transformation can be defined
inductively by

T**O (S) = Id(S) = S,
T**n (S) = T(T**(n-I)(S)).

The set

T= (Id, T, T**2, T**3, .....

is a cyclic group and can be regarded as a transformation group on
S. In this paper, we will use T either as a permutation or the
cyclic transformation group. The actual meaning will be clear
from the context. As an illustration, we will state the
following proposition in our convention (abuse of notation).

Proposition. Let T be a permutation on S = (1,2,3,..n). Then a
subset A is an orbit space of T (as a group) on S if and only if
A is a cycle in the cycle decomposition of T (as a permutation).

The proof is trivial, we will illustrate the notion by example.
Let T =(17)(254)(38)(6)(9) and S =(1,2,3...9) as above. 6 and 9
above are the fixed points of T. (1,7), (2,5,4) and (3,8) are
orbit spaces of T. Orbit may also be called as minimal invariant
subspace.

Definition. Let T be a transformation on S, then
the map T, by abuse of notation

P(S) ---- > P(S)

defined by

T((sl,s2,s3,..)) = (Tsl,Ts2,....

is called diagonal action.

Proposition. If H is a transformation group on S, then, by
diagonal action, H is a transformation group on the power set
P(S). In particular, if T is a transformation on S, T is also a
transformation on P(S).

Example. Let T=(17)(254)(38)(6)(9) and S ={i,2,3...9) as above.
Then T send (2,4,8) to (5,2,3). (T sends 2 to 5, 4 to 2 and 8 to
3).
Definition. A subset S1 of S is called i-subset if S contains i
elements, i.e., the cardinality of S1 is i.

Proposition. Let P(S,i) be the family of all i-subsets of S. If
H is a transformation group on S, then, by diagonal action, H is
a transformation group on P(S,i). In particular, if T is a
transformation on S, T is also a transformation on P(S,i).

Definition. The orbit which is not a fixed point in P(S,i) is
called i-dimensional cycle.
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Example. (1,3) is moved to (2,8), and (2,8) is moved back to
(1,3). The family F=((1,3),(2,8)) is an orbit space of T on
P(S,2) and hence is a 2-dimensional cycle.

Remark: To suppress the notation, in the future such family F will
be simply denoted as 13,28.

4. FINITE ENTROPY

4.1 Partitions.

By a partition P = (Ri:i=l,2,..) of the set S, I mean a
collection of pairwise disjoint sets Ri (i.e., the
intersection of two distinct sets Ri and Rj is empty) and the
union of all Ri is S. Ri will be called a component of the
partition P.

Example: Let S = [a,b,c,d,e,f,g] be a set. Then

Rl=(a,c,e,g), and
R2=(b,d,f)

form a partition of S.

There are two trivial partitions, namely

(1) RI=S itself. The singleton P=-(Rl) is a partition of S.
(2) Let P be a partition in which each component Ri contains

only one element of S, i.e., Rl=(a), R2=(b) .. .R7={g), then
P=(Ri) is a partition.

We will call these two partitions improper partitions. A proper
partition is a partition which is not improper. A partition P is
said to be finer than another partition Q (or Q is coarser than
P) if for every set A in P there is B in Q such that A is a
subset of B.

Let P=(Ri: i=1,2,..) and Q =(Sj: j=l,2,... be two partitions.
We denote by P+Q is the partition of S, which consists of all
possible non-empty intersections of Ri and Sj. I sometimes
simply say P+Q is the partition generated by P and Q. Such sum
can obviously be generalized to more than two summands.
Let T be a permutation. T induces a new partition TP=P1 on S.

Example: Let S =(1,2,3,4,...n). Let a partition be

P = ( (1,3), (2,4,6). (5), (7,8...n) ).

Let T be a cyclic permutation,

T(i) = i + 1 for i < n
T (n) = 1
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(1--> 2, 2--> 3, ... (n-l)--> n, n-->l)

Then the partition TP=Pl is

P1 = ((2,4), (3,5,7), (6), (8,9,...n ,1))

Then, the next partition T**2 (P) = TPl = P2 is

P2 = ((3.5), (4,6,8), (7), (9,10,...,n,1,2))

In general, T**i(P) - TP(i-l) - Pi is

Pi = ((i+l,i+3), (i+2,i+4,i+6) (i+5), (i+7,i+8,..n,1,2,..i)).

Since S is a finite set, there can only be finitely many distinct
partitions. So Pi will stop at some finite step.
Let the partition generated by all of the partitions P1,P2,..Pn
be denoted by P[1,2,..n]. That is,

P[l,2,..n) = P1 + P2 + ... + Pn.

We will denote by P(T] the partition generated by all possible
different partitions Pl,P2,..Pn,.. Note that since S is finite,
there is at most finite number N of distinct partitions.
Thus,

P[T] = P1 + P2 - ... = P1 + P2 +...+ PN

Definition. A partition P is called a generator for a
transfor1%;:ion T, if P[T]=P.

The following proposition follows immediately from the meaning
of orbits.

Proposition. P is a generator if and only if P consists of orbits
of T in various dimensions.

This proposition leads us to the final reduction theorem.

4.2 Finite Entropy.

Let P = (Ri:i-l,2,3,..) be the a partition. Let m be the
counting measure, i.e., m(Ri) is the cardinal number of Ri. We
define the entropy of P (as in Ergodic theory) as follow:

H(P)=[m(RI)*Log(m(Rl)) + m(R2)*Log(m(R2)) + ... ]

H(P) is called the entropy of the partition (* denotes the
multiplication).

Next we define entropy of T and P by

H(PT) = H(P(T])/LogISI

where :S: is the cardinal number of S and P(T] is the partition
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on S generated by all the partitions of the powers of T.

We are interested in the entropy of a permutation, so we define

H(T) = AVE( H(P,T): for all possible proper P in X)

where AVE, the average, is defined to be the SUM of H(P,T)
divided by the number of all proper partitions P.

The entropy is defined in terms of the cyclic group generated
by T. So any generator should have the same entropy. To choose
among different generators, we offer the following: Since we are
interested in ordering, we can-assume the original space S is
linearly order. Then for each permutation, we can speak of
distance. We will define the distance of a permutation to be the
maximum movements of the elements in S. The distance of an
element moved is measured by the number of elements between the
beginning position and ending position (after moved). We suggest
choosing the generator which moves approximately half of the
order of the permutation.

Remark:

In ergodic theory, the entropy H(P,T) is defined to be
the limit of the sequence

( 1/n * [H(P[I,2,..n]) ). as n --- > infinite

(* denotes the multiplication). The entropy of T then define as

H(T) = SUP H(P,T).

Roughly the entropy of T can be expressed as

H(T) = sup limit ( i/n*(H(P[l,2,...n]))
= sup limit (Cesaro's means)

In other words, roughly H(T) is the supremum of Cesaro means
(Note that limit Ai = limit [(Al+A2...+An)/n]). We believe that
our definition of H(T) is a finite analogue of the entropy in the
ergodic theory.

4.3 Entropy of Cyclic Permutations and Identity.

(1) T=Id, the identity permutation.

Let P = (Ri:i=l,2,..) be any partition. The entropy is

H(P,T) = [m(Rl)*Log(m(Rl)+m(R2)*Log(M(R2)+ ..... ]/LogIS,

If S has more than two points, I consider a partition, which
consists of one point (s) and the rest of the points, S\(s}.

H(P,Id) = m(S\{s))*Log m(S\(s)) + m((s})*Log(m(S) > 0
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So the entropy of Id is

H(Id) = AVE (m(S\(s)))*Log(m(S\(s))), .... ) >0

(2) T is a cyclic permutation.

Let P be any partition. Then, because of the nature of cyclic
permutation, P[T] is a partition of singleton, i.e., every
equivalent class has one element. Thus

H(T) = SUM[m(Ri)Log(m(Ri))/Log(m(S))]
= SUM[ (Log(r) ]/Log(mr(S))
= 0 (in this case r=l)

The two extreme cases seem to be measuring what we expected.

5. COMPUTATION OF ENTROPY

The computation of entropy, via its definition, is prohibitedly
expensive. The Hardy-Ramanuijn function HR(n) grows in the order
EXP(Sqr(n)). And the number of partitions is strictly greater
than HR(n) [HR(n) = the number of possible positive sum = n].
Therefore, without some reduction theorem, the computation is
practically impossible. In this section, we introduced such a
reduction theorem. The complexity of the reduction theorem is not
depend on the input string n. It depends one structure of the
representation of T as cycles.

5.1 Permutations with homogeneous cycles.

Let us examine a simple example:

S = (1,2,3,4,5,6) and T= (12)(34)(56).

Let A=(1,2) be a component of some partition in S. Since A is
invariant under T, it will be a component of the partition P[T].
Next, I would like to enumerate all the partitions that will
give rise to a component A in P[T].

To properly enumerate the contribution of A to the entropy, we
need some notations: Let C(n,m) be the binary coefficient, i.e.,
C(n,m) = n!/m!(n-m)!. Let Pi be the number of all possible
partitions of i elements.

The possible partitions are:

(a) A2=(1,2),and components of partitions of S\A2 = (3,4,5,6)
[for example, (1,2),(3),(4),(5),(6)

(1,2),(3,4),(5),(6) are such partitions]

(b) A3=(1,2,-), and components of all partitions of S\A3
[for example, (1,2,3),(4).(5).(6)

(1,2,4},(3).(5).(6) are such partitions]
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(C) A4=(1,2,-,-), and components of all partitions of S\A4
[for example, (l,2,3,4),(5).{6)

(1,2,3,4),(5.6)
(1,2,4,5),(3).(6)
(1,2,3,4),(3.6) are such partitions)

(d) A5=(1,2,3,4,5) and components of all partitions %f (6).

So the contribution of (1,2) to the entropy of T is:

E((12)) = (2Log2)[C(4,O)P4 + C(4,1)P3 + C(4,2)P2 + C(4,3)Pl]
= 51(2Log2)

The terms C(4,O)P4 computes the case (a)
C(4,1)P3 computes the case (b)
C(4,2)Pl computes the case (c)

There are some over counting in this formula, however, there will

be adjusted by the next formula

The contribution of (1,2,3,4) is:

E((12),(34)) = (4Log4 - 2Log2 - 2Log2)[C(2,O)P2 + C(2,1)Pl]
= (4Log4-4Log2)*4

The two negative terms -2Log2 is to discount the over counting of
the components of (1,2) and (3,4) at terms (c) and (d).

Combine all these formula together, we get:

E(T) = C(3,1)*(51*2Log2) + C(3,1)*(4(4Log4-4Log2))
= 129(2Log2) + 12(4Log4).

Besides cycles, there are other "higher dimensional orbit",
namely, the orbits on P(S), the power set of S.

For example, (1,3), (2,4) is such a 2-dimensional orbit.

The contribution of (1,3), (2,4) can be understood from

examining the possible partitions

The possible partitions are:

A2=((1,3), (2,4)), and components of all partitions of S\A2

[For example, (1,3),(2,4),(5),(6)
(1,3),{2,4),(5,6) are such partitions

the contribution to the entropy is (2(2Log2)*C(3,2)*2[c(2,O)P2
where the meaning of each term is:

2(2Log2) = m((l,3))Logm((1,3))+m((2,4))Logm({2,4))
C(3,2) = possible way of choosing two cycles
2 = possible orbits:((l,3),(2,4)) and ((1,4),(2,3)}
c(2,O)P2 = contribution o.1. S\A2]
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A3=((1,3,-), (2,4)) and components of all partitions of S\A3
A4=((1,3), (2,4,-)) and components of all partitions of S\A4
[for example, {I,3,5),(2,4),(6)

(1,3,6),(2,4),(5)
(1,3),(2,4,5),(6)
(1,3),(2,4,6),{5) are such examples]

A5=((1,3,-,-), (2,4)) and components of all partitions of S\A5
A6=((1,3), (2,4-,-)) and components of all partitions of S\A6

So tne contributions of the 2-dimensional orbit are:

(2(2Log2)*C(3,2)*2(C(2,0)P2 + 2*C(2,1)Pl + 2*C(2,2)PO]

= 9,(2Log2) - 8(3Log3)

Similarly, one can compute the 3-dimensional orbit

2(3Log3)*C(3,3)*(2**3)[C(0,O)PO]
So the entropy of T is:

H(T) = (129(2Log2) + 12(4Log4) + 96(2Log2) + *(3Log3))/201

where 201 is the total number of partitions.

5.2 General Permutations.

First we observe that the major non-zero contribution to the
entropy of a given permutation T comes from its orbits and its
high dimensional analogue. The orbits of T are essentially some
"collection" of cycles. The high dimensional orbits are "union"
of cycles. The exact meaning will be clear from the proof.

Let T be a general permutation which is decomposed into
cycles. These cycles are:

Al, A2, .. ,Aa are cycles of degree Da
B1, B2,..,,Bb are cycles of degree Db
Cl, C2,...,Cc are cycles of degree Dc

and T is a product of these cycles. Let k=a+b+c+....
We will use E'(x) to represent the contribution of orbit x and
E"(x) to represent the contribution of high dimensional orbits
associated with x.

Let A be a typical cycle (i.e., one of those Ai', Bi',
Ci',..) of degree D. By similar analysis of the example above, we
can summarize the contribution of A as:

E'(A) = (dLogd)(C(n-d,0)P(n-d) + C(n-d,l)P(n-d-1) +....+
C(n-d,n-d-l)Pl)
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Let B be another typical cycle with degree e, then the
contribution of the orbits which contain A and B is:

E'(A,B) = ((d+e)Log(d+e) - dLogd - eLoge)(C(n-d-e,O)P(n-d-e)
+C(n-d-e,dl)P(N-d-e-l) +...+C(n-d-e-l)Pl)

Let C be another typical cycle with the same degree f, then
the contribution of the invariant subspaces which contain A,B
and C is:

E'(A,B,C) = { (d+e+f)Log(d+e+f) - dLogd - eLoge - fLogf
-(d+e)Log(d+e) - fLogf - dLogd
-(d+f)Log(d+f) - dLogd - eLoge)
-(e+f)Log(e+f) - eLoge - fLogf) )
* ( C(n-d-e-f,0)P(n-d-e-f) + C(n-d-e-f,1)P(N-d-e-f-l)

+...+C(n-d-e-f-l)Pl )

Similarly, one can find all the E' for 4, 5,..cycles

The contribution of high dimensional invariant subspaces can
be computed as follows: Let A be one the Ai'.

E"(A) = (Pd - 1)*
[take one component (point) of high dimensional
cycle out, then take all possible partitions on the
remaining collection of components]

(
d(2Log2)C(a,2) (d**(2-1))(c(n-2d,0)P(n-2d)
+d(C(n-2d,l)P(n-2-d-l) +...+C(n-2d,n-2d-l)Pl+C(n-2d,n-2d)PO])

(contribution of 2-dimensional cycles]

+d(3Log3)C(a,3) (d**(3-1)){C(n-3d,O)P(n-3d)+
d[C(n-3d,l)P(n-3d-l) +...+C(n-3d,n-3d-l)Pl+3(n-3d,n-3d)PO])

(contribution of 3-dimensional cycles]

+d(iLogi)C(a,i)(d**(i-1))(C(n-id,0)P(n-id) +
d[C(N-id,l)P(n-id-l) +...* C(n-id,n-id-l)Pl+C(n-id,n-id)PO])

(contribution of i-dimensional cycles;
i<=a, a is the number of A's])

Similarly, E"(B), E"(C),...
The final entropy is the weighted sum of E'(A), E'(A,B),..
and E"(A)... Formally, we stated

Reduction Theorem. Let T be a permutation on the set S. Then the
entropy

H(T) = H'(T) + H"(T)

where
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H'(T) = a*E(Al) + b*E(Bl) + c*E(CI)+
(sum of 1 representing cycles]

+C(a,2)*E(Al,A2)+C(a,l)*C(b,l)*E(Al,Bl)+C(a,l)*C(c,l)*E(Al,Cl)+..
[sum of 2 representing cycles)

+C(a,3)*E(Al,A2,A3)+C(b,2)*C(c,I)*E(Al,A2,Bl)
+C(a,1)*C(b,1)*C(c,1)*E(A1,Bl,Cl)+..

[sum of 3 representing cycles]

+[C(a,kl)*C(b,k2)* ..... ]*E(A2, .... BI,B2,..Cl,C2 ..... )
+ .. eo..

[sum of k-1 representing cycles;
k is the total number of cycles;
kl+k2+... = k-i)

H"(T) =a*E"(AI)+b*E"(BI)+c*E"(CI)+
[sum of representing cycles]

With this theorem, the computation of entropy of a transformation
T becomes a counting problem. Using the reduction theorem the
computing time is drastically reduced. The complexity of this
computation is not depends on the number of input, but depends on
the structure of input; the structure of cyclic decomposition of
the permuatition.

6. QUASI KOLMOGOROV RANDOMNESS

Suppose we are given a binary Kolmogorov random string. Then by
appropriate permutation, the string can be reduced to O's and l'a
-- we will call such string commutative Kolmogorov string. We
have a good knowledge about the number of 0 and l's in such a
commutative Kolmogorov random string. Now we use an entropy
random permutation to permute such a commutative Kolmogorov
random binary string. Then the resulting string should be a good
approximation to the Kolmogorov random string. We will call such
string quasi Kolmogorv random string. The permutation which bring
a Kolmogorov random string to the commutative string will be
called Kolmogorv permutation. We believe entropy random
permutation is an approximation of Kolmogorov permutation.
Further will be conducted.

7. CONCLUSION

Most of physical states are random, in other words, the number
of random states should dominate the number of ordered states.
Similarly the number of random strings should be much more than
that of ordered strings. In fact, this is one of our intuitive
assumption on the properties of randomness. If there is, say in
the extreme case, only one random string, then we can always
looking for clues from this "random string"; and the meaning of
randomness is lost.
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Any notion of "computable randomness" can not coincide with
Kolmogorov randomness; otherwise by Chaiten's theory, it
will imply that the "computable randomness" is not computable.
Conversely, for any notion of "computable randomness", there are
strings which are "computable random", but not Kolmogorov random.
Therefore, some of the string which is "entropy random", may not
be Kolmogorov random. The cyclic permutation has a low entropy,
but intuitively, it can not be Kolmogorov random.

The computation of entropy is quite interesting, it involves (1)
Ergodic theory (2) transformation group theory in a very
innovative fashion (No transformation group theory have looked at
high dimensional diagonal action and investigate their orbits
(the high dimensional cycles); this may create new field in
transformation group theory. Though the reduction theorem
reduces the computation in the order of magnitude, it still quite
complicated, some notion of approximate entropy may be needed in
order to reduce the computation further.
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SECTION 3

POLYINSTANTIATION AND INTEGRITY

Polyinstantiation continues to be a controversial issue for multilevel database management
systems. However, it is only one of several problems that result from conflicts between
integrity features of database management systems and the enforcement of mandatory access
controls. In their paper "Polyinstantiation in Relational Databases - Some Semantic
Questions," Yazdanian and Eizenberg identify fundamental ambiguities that result from
polyinstantiation and suggest alternatives for introducing appropriate semantics.
Bill Maimone and Richard Allen describe a number of areas where multilevel security
enforcement conflicts with the integrity features defined by the ANSI SQL2 standard. Their
paper "Methods for Resolving the Security vs. Integrity Conflict" provides insight into the
problems that face both application designers and DBMS vendors when attempting to
provide multilevel security in a database environment. Chip Paradise's paper "Using
Polyinstantiation in the Real World" describes a government effort to employ
polyinstantiation to provide "cover stories" in a multilevel database application. In their
paper "Enforcing Primary Key Requirements in Multilevel Relations," Sushil Jajodia and
Ravi Sandhu propose several alternatives for providing integrity without sacrificing strict
security. Leonard Binns' paper "Inference Through Polyinstantiation" analyzes some
potential inference exposures in applications that intentionally use polyinstantiation to
provide cover stories.
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Abstract

In a Multilevel Relational Database, security problems occur when data are handled at different
protection levels. Semantic ambiguities which result from the polyinstantiation solution are
pointed out and some clarifications based upon the interpretation of the key unicity are proposed.

In a relational database, facts are represented through tuples of a relation. In the basic
flat relational model any two different tuples correspond to different information but
introducing the concept of key and functional dependencies between relation attributes
allows to identify an entity with its key attributes values. Thus two different tuples with
the same key value, e.g. in two different database states, may be interpreted as two
different values of the same entity.

If the key unicity constraint is enforced in any relation extension, each key value is present
at least once. Therefore it is possible to define the update operation as modifying non key
attributes of a tuple identified by its key attributes. Modifying one or more key attributes
is not considered as an update operation but as a couple of delete and insert operations.

The key unicity assumption meaning may be recalled: every non key attributes should
depend on the key.

Without the key unicity assumption, it is possible to delete and insert tuples but not to
update entities in a single operation. Moreover, if the key does not include all the relation
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attributes, a relation extension may contain different instances of the "same thing". This
is called polyinstantiation. Logically forbidden in a classical database instance, its
necessity has been claimed in the multilevel security database in order to prevent
information leakage from high level to

low level by covert channels [Den&all. The polyinstantiation is handled by integrating
security labels as new attributes into the relational model.

Several interpretations of the polyiastantiation and their consequences will be shown.

ABSOLUTE OR RELATIVE TRUTH

Several users of different clearances are using (querying, updating) the same database
(relation) where several data (tuples) are diversely classified.

A leakage may occur when a low level user tries to insert a tuple whose key value already
exists at a higher level. If no security management is done, the database management
system logically rejects the new insert. Hence, the low user is aware of the existence of the
data at a higher level, since querying the database about his own data gives no answer. A
potential signalling channel results: a high level subject inserts and deletes a tuple with a
given key, while a low subject tests the effect of the insertion of a tuple having the same
key value. To avoid this kind of leakage, an "entity polyinstantiation" has been proposed
[LuHsl].

The e-xistence of a tuple (i.e. its key value) may have a low level while its "value" (i.e. its
non key attributes values) is highly dassified. Such a situation results from the following
sequence of operations:

1. a low subject creates a low tuple (the non key attributes have 'null' or defined values)

2. a high subject updates some of the non key attributes of the same tuple (the
previous instance of the tuple does not exist any longer)

Now, if a lov query involves this high level tuple, it is prohibited, this reveals the previous
high level update. In order to avoid the leakage which may result from that sequence,
"polyinstantiation" consists in accepting two tuples sharing the same key values: the
initial one and the updated one. The next example is proposed in [JaSa]:

The multilevel relation SOD (Starship, Objective, Destination) has a user primary key
Starship to say that a starship has one objective and one destination only. This is true for
a monolevel usage of the database, but with a multilevel security policy, it is meaningful
to have some classified data on the starship "Enterprise" which are not visible for low
level users. In this case a low level user could or would introduce an objective and a
destination for the "Enterprise".

One way to avoid polyinstantiation would be to create a database extension for each of the
security levels. Hence, the low level behavior of the database would be the same as if no
higher level data existed. Some functionalities would not exist any longer. For instance, it
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would not be possible to use the security attributes as selection arguments. But when and
why is it unacceptable? It would be helpful to make the rationales more explicit.

In fact, a high clearance user must continue to "see" any data whose level is dominated by
its own clearance level and therefore will see two data with the same key
(polyinstantiation). If we consider the semantic of the primary key, this is not allowed
when dealing with facts in the real world, apart of any multilevel consideration. In the
above example, "Enterprise" as any other starship could not have more than one objective
and destination. Notice that if we admit that the "Enterprise" could really have two
simultaneous missions - one secret and the other unclassified - the Starship attribute
would NOT be a key of the relation. The question is: what kind of semantic for the two
4ib•: Luple6 or what kind of acceptable constraint could snlve the non unique key value
problem?

In the multilevel mode, two basic choices are possible

"* Telling the truth to any user

"* Lying to low level users

These two basic choices are general in any security system management

OK satisfy request

Request -- Security control

refuse request

not OK

confuse the user
(or disconcert him by simulating request
satisfaction while in reality it is not)

In the "telling the truth" option, the low level user trying to introduce another objective
and destination for the "Enterprise" is aware that such a tuple already exists at a high
level he is not allowed to access. Therefore he is not allowed to introduce another
objective and destination for this starship due to the general consistency rule "A starship
has only one objective and one destination" which is expressed through the user primary
key of the relation SOD. We have seen that a leakage may result.

In the "Lying option", the low level user is not aware of the existence of a high tuple
(although it really exists) and is allowed to introduce another one of its own level. Of
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course, considering the general rule "A starship has only one objective and one
destination" the new tuple introduced by the lower level user looks inconsistent with the
old one. Is it really inconsistent?. This tackles the problem of integrity while dealing with
a multilevel relation. In this case a high level user will see both tuples and must be aware
that at most one of them is true. Let us assume the lower level tuple is not true. It may
be OD purpose (a lure) or erroneous: this ambiguity cannot be easily clarified.

There is another problem about the integrity of data. Any user whose clearance is not
maximal has no guaranty on the data integrity. His only assurance when obtaining
answers to his interrogations is: "these are the facts I am supposed to believe". Is it
acceptable? Is this always admissible for a multilevel database where reliable data must
exist at any level?

If one does not accept neither the consequences of the lying option nor potential covert
channels, a solution is to consider reality (facts) as being relative to the security level
linked to it. Hence, the user primary key unicity is applied to each level. Otherly stated,
the classification level is part of the primary key, and the semantic of the relation is
different: there are not true data in one hand and false data in the other hand but
relatively true data for each level and low level users are free to introduce "their" true
data for "their" level. Of course, for a given level (same classification level attribute
value), due to the general rule "A starship has only one objective and one destination" the
primary key is unique (no more than one tuple for the "Enterprise" starship).

In this case, high level users will "see" low level data associated with their classification
level and are naturally aware of the fact: this data is true for that level.

The relative truth approach makes it necessary to answer to the following semantic
question: what are the 'Low' informations that are considered as being true by the 'High'
users? For instance, the tuple

SOD(Enterprise, Fishing, Grenade)

is created at the Low level. Clearly, if the High user updates an attribute (e.g. the
Objective becomes 'War'), he does not believe the previous information any longer. But
did he already believe it before the update operation?

Another kind of question comes from the polyinstantiation if the "Lying option" is chosen.
Suppose that both next tuples exist in an instance of the database :

SOD(Enterprise [U], Fishing [U], Grenade [U])

SOD(Enterprise [U], War[S), Grenade [U])

'U' and 'S' stand for Unclassified and Secret respectively.

The polyinstantiation technique implicitly accepts the following fact:

"The U user is not authorized to know that he is not authorized to know the Objective of
the Enterprise"
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This fact is a direct consequence of the dynamic binding of the security I -'-• ti other
words, the update operation has been done at the current level S). But another choice
could be made. If one accepts that :

"U is authorized to know that he is not authorized to know the Objectiv, -1" the
Enterprise"

then it can be stated, at the level U, that the Objective level of the Enterprise is S. In
such a case, the lure and the polyinstantiation are not necessary any longer.

To summarize, at each level there .s only one tuple occurrence per user key value, which
means that including the tuple protection level in the primary key will ensure the "one
tuple per relation key value" rule of the database.

OTHER PROBLEMS

The approach presented above concerns the problem of polyinstantiation for relations
where the primary key is not the whole set of its arguments. There are other problems
when either the key is the whole set of the attributes or there are several candidate keys.

The key is the whole set of attributes

For instance R(P,E,L) describes a (project,experiment,laboratory) relation, with different
experiments taking place in different laboratories for different projects. In realistic
situations, the primary key is the whole set (P,E,L): no one attribute is functionally
depending on the two others. In such a case, all the attributes of a tuple have the same
security level which is the level of the tuple and the knowledge of the existence of the data
is equivalent to the knowledge of the data itself. The previously proposed semantic looks
the most appropriate to this case: the truth is relative to the security level and a low level
clearance user who attempts to insert a data a high classified occurence of which already
exists must not be warned..

Several keys

Let us consider a multilevel relation with two candidate keys. Any of the keys can identify
the existence of a tuple. If both keys have the same security level in any tuple, the
conclusions and questions of the single key case analysis remain valid. The new case to
consider is: two keys may have different levels in some tuples.

For instance let us consider the relation

E(Empno, Name, Age, Function)

for employee number, age, name and function respectively.

It is assumed that there are two key candidates: Empno and the couple (Name, Age)

Suppose the next tuples are in an instance of the database:

('id704' [U], (Smith, 37) [U], Programmer [U])
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('id323' [U], (Smith, 37) [S], Manager [U])

('id323' [U], (Jones, 29) [U], Manager [U])

Now the employee (Smith, 37) has left the company. The database must be updated. A U
level user requests to delete the 'id704' tuples. Consequently, the first tuple is deleted.
But equivalently for him, he may request to delete the (Smith, 37) tuples. Then the two
first tuples will be deleted. Thus, the semantics of the two operations are not the same
whereas the intention of the user is the same.

It seems that some further constraints must enforce uniform classifications for all keys
(candidates or not) in order to be able to check multiple key consistency at any level.

CONCLUSION

The polyinstantiation is a technical solution to security problems in Multilevel relational
databases, but the corresponding semantic is ambiguous or questionable unless a priori
assumptions are explicitely made. Depending on the assumptions, there may be severe
consequences on the integrity. A promising way to get rid of ambiguities while accepting
more diverse semantics will be to state the facts and constraints in modal first order logic
and then considering how a given database or knowledge base can be used to implement
them.
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INTRODUCTION der polyinstantiation. The undesirable effects of polyin-

stantiation are greatly reduced where the unit of poly-
This paper considers the conflicts between security and instantiation is reduced to the single element level, but
Integrity in a multilevel secure MILS) RDBMS, indud- any polyinstantiation scheme faces additional complex-
ing the entity and referential integrity conflicts de- ity in a relational database which does not support
scribed in [1], plus value constraints and transaction multi-valued attributes.
integrity. In each of these conflicts, several alternatives Another ch which may maintain secrecy, but
for resolving the conflict are described which result in approa
different tradeoffs in the degrees of security and integ- without sacrificing entity integrity, is to avoid possible
rity. Additional consideration is given to SQL features duplicate key value conflicts by restricting a user's
specified in ANSI SQL [2,31 which introduce new secu- choice of primary key values. This might be accom-
rity and integrity issues. plished either through a controlled application environ-

ment, or through a DBMS-supplied unique key value.
The security policy considered here follows the corn- For many applications the user is not relied upon to
mon mandatory access control (MAC) policy described supply a unique primary key value, simply because it is
in the Trusted Computer System Evaluation Criteria [4. operationally inconvenient to have a user guess a
A subject can read a data element only if the subject unique value. Well-written applications will automat-
access class dominates the object access class, and can ically find a new unique value, typically by reading and

write a data element only if the object access class domi- incrementing a sequence number. This "convenience"
nates the subject access class. might be strengthened by ensuring that all new records

are inserted using a controlled application, or by requir-
ing the value to be supplied by the DBMS. The security

ENTITY INTEGRITY exposure of this approach lies in the generation of
unique values. If users at multiple access classes read

Entity integrity requires that any tuple can be uniquely and increment the same sequencer, there is a well-
identified by its primary key. More specifically, each known covert channel with a bandwidth proportional
tuple contains a non-null primary key whose value is to the speed of the sequencer. The sequencer channel
different from all other values in that relation. The can be reduced by inserting delays or by introducing a
following is an example of the standard ANSI SQL random element into the sequence generation. The
syntax used to create a table. channel can be eliminated by partitioning the sequence

values according to access class. This latter method on
CREATE TABLE DEPT the surface seems equivalent to polyinstantiation, but it

(DEPTNO NUMBER PRIMARY KEY, is significantly different in that the primary key main-
DNAME CHAR (10) NOT NULL) tains uniqueness without considering an "invisible" ac-

The security conflict occurs when a user at a low access cess class. The sequencer approach is not helpful where

class attempts to insert a primary key value which has the user must in fact choose the primary key to match

already been inserted at a high access class. If the RD- some existing real world value.

BMS does not insert the row, the secrecy of the high Finally, one might choose to simply notify the user of
value is compromised. If the RDBS inserts the r , the duplicate key value and compromise security. This
entity integrity is compromised. approach may be acceptable in conjunction with a spe-

One approach to strictly maintain secrecy in spite of cific auditing capability and/or automatic audit actions

integrity.is called ý olyinstantiation. This approach ef- to minimize the compromise. For example, a duplicate
fectively .-mnsiaders the access class to be an "invisible" value error might automatically revoke the user's access
part of the primary key. Duplicate primary key values or notify a security officer.
are permitted, provided that no two duplicates are in-
serted at the same access class. Numerous papers [5,6,71 Since some of these approaches could be specific to
have explored the consequences of entity integrity un- particular relations or transactions, it may be appropi-
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ate to vary the method used within an application ac- manner [31. The SQL column syntax for "cascade" is
cording to such factors as the degree of user access shown below; the other two options are similar.
allowed, frequency of change, actual data sensitivity,
and auditing capabilities. DEPTNO NUMBER REFERENCES DEPT (DEPTNO)

ON DELETE CASCADE

REFERENTIAL INTEGRITY The cascade option automatically removes the child
records as part of the same transaction as the removal

The referential integrity property states that a foreign of the parent - equivalent to immediate garbage collec-
key value must always refer to a valid primary key tion but without any intermediate adoption problems.
value. In other words, there must be no dangling refer- The set default/null options leave the child records in
ences. A security conflict arises whenever there is i place, but change the foreign key value so that it refers
foreign key relationship across two access classes. It can either to another valid value, or to null. The latter may
be assumed that the foreign key (child) record must require a change to the data model; the relationship
always dominate the primary key (parent) record; oth- must be optional. From another perspective, these ref-
erwise a user reading the child record would observe an erential actions are simply the garbage collection
apparent integrity violation. The conflict occurs when mechanism required above. The difference is that for
a parent record is removed after a child record has been MLS systems the mechanism requires the ability to
created at a higher access class. A user removing a write up in order to enforce the constraints. The result-
parent record may be incapable of removing or even hig security risk is that the user might be able to directly
detecting all dependent child records at higher access or indirectly learn the nature or existence of the write up
classes. The following is an example of ANSI SQL operation.
syntax for creating a dependent child table called EMP
with a foreign key pointing to the previously created The ANSI "restrict" referential action is the one option
DEPT table. which does not preserve security. This option would

prevent the user from deleting the parent until all de-
CREATE TABLE EMP pendent child records were deleted. If the user cannot

(EMPNO NUMBER PRIMARY KEY, see the offending child records, he can infer the exist-
ENAME CHAR(20) NOT NULL,
SALARY NUMBER (7,2) ence of child records at a higher access class. As with
CHECK (SALARY > 0), entity integrity, the exposure of this approach can be
DEPTNO NUMBER REFERENCES DEPT (DEPTNO)) reduced by restricting record deletion, or by auditing

the enforcement of the restriction.
One approach is to allow the parent record to be deleted,
and to leave the child records in place. This ensures For any of the above referential constraint enforcement
secrecy, but sacrifices referential integrity since the child mechanisns which write above the user's access class,
records now refer to a non-existent parent. One method there is a non-obvious complexity introduced by the
of resolving the inconsistency is to remove the child trigger mechanism described in SQL3 [3]. In brief, a
records at some later time with a garbage collection trigger causes some actions to be executed before or
procedure. The integrity risk is that the dangling child after some predefined event, such as record insertion or
records might be seen before they are deleted and that deletion. For example, the following trigger might re-
some application will interpret this as a valid record. cord salary changes.
Even worse, the orphan record might accidentally be
"adopted" if the previous parent primary key value is CREATE TRIGGER SALARY_RECORD

reused before the child records are removed. To elimi- BEFORE UPDATE OF SALARY ON EMP

nate this risk completely, each application would be FORIN FOR EACH RON

required to incorporate the garbage collection proce- INSERT INTO SALARYHISTORY

dure into each operation. If the security model prohibits (EMPNO, OLD_SALARY, NEWSALARY)

writing up, garbage collection would have to be per- VALUES (OLD.ompno,OLD.ualaryNEW.salary);

formed on both read and write operations. END

Another approach is to remove or redefine the referen- The difficulty arises when triggers are combined with

tial constraint in such a way that it does not violate the three "secure" referential actions. In particular, the

security. The ANSI SQL2 referential actions "cascade", write-up carried out to enforce referential integrity may
"set null", and "set default" all provide a means for cause a trigger to fire. Since the trigger is firing as a

result of the existence of data above the access class ofdealing with classified child records in a more secure thusrtedictoinrcteulsftetigr
the user, the direct or indirect results of the trigger

56



should not be available to the user. Direct trigger results In the simplest case, all value constraints are defined at
such as rows inserted into another relation can be cor- object creation and every value inserted meets all de-
rectly labeled at the access class of the triggering event fined constraints. This simple case poses no security
or data. However extreme caution must be exercised risk because the constraint only affects the subject doing
whenever writeup is required to perform an operation. the insert or update. In a more realistic environment, it
All of these actions may be used to cause code to execute is possible that additional constraints may be defined
at a higher access class. Since the semantics of triggers after data has been entered. A conflict arises when some
allows a trigger to cause a transaction to fail, trigger code existing data classified above the level of the user acti-
may be designed to effect the transaction commit or vating the constraint does not meet the new constraint.
rollback depending on the contents of classified data.
For example, the following trigger will tell an unclass- One approach is to allow the constraint to be enabled if
ified user whether or not the sensitive employee Allen's all visible data meets the constraint, and to only enforce
salary is greater than $100,000. The trigger fires when the new constraint for all future data. The constraint
an unclassified user attempts to delete Allen's depart- might be considered fully enabled for all data visible to
ment. the user adding the constraint, and may or may not be

considered enabled at higher access classes depending
CREATE TRIGGER SALARYTRACKER on the data values already present This approach

BEFORE DELETE ON EMP maintains security, but compromises data integrity

DECLARE FOR EACH ROW since applications can no longer be guaranteed that all
highsalary EXCEPTION; data meets all constraints.

BEGIN
IF OLD.salary>100000 and OLD.ename - 'ALLEN' Another approach is to notify the user that the con-
THEN RAISE high salary; straint could not be enabled when some higher level

END;

data element is found which does not meet the con-
Finally, an approach which avoids the problem is to straint. This maintains integrity, but notifies the user of
restrict references so that the parent and child must the existence of some higher level data. The degree of
always be at the same access class. This would prevent the security compromise is directly proportional to the
any possible channels, since those channels only exist flexibility of the constraint expression. A flexible con-
where a reference crosses multiple access classes. This straint language such as that defined in SQL would
mechanism can be implemented using the following allow the complete disclosure of the contents of all
trigger on EMN and a similar one on DEPT. higher level data by successive attempts to enable con-

straints. The following constraint determines whether
CREATE TRIGGER AVOID_EMP or not Allen makes more than $100,000.

BEFORE INSERT ON EMP
FOR EACH ROW ALTER TABLE EMP

DECLARE ADD (CHECK (SALARY > 100000

deptlabel LABEL; OR ENAME I- 'ALLEN'))

label-mismatch EXCEPTION;

BEGIN SELECT ROWLABEL FROM DEPT INTO deptlabel The exposure of this approach might be minimized by
WHERE DEPTNO - NEW.deptno; tightly restricting the ability to define new constraints
IF deptlabel I- NEW.rowlabel (a sensible precaution anyway), and by the judicious use
THEN RAISE label_mismatch; of auditing.

END;

Finally, one might require that value constraints only be
VALUE CONSTRAINTS added by a MAC-privileged user with the ability to read

all data values. The potential loss of flexibility is that an
Value constraints are defined integrity rules that may unprivileged user would be unable to define new con-
restrict the valid values for a data element. A value straints, even if the table actually contained no classified
constraint defines a domain for a data attribute or set of data, since the presence or absence of data are both
attributes. Value constraints or domains range from signalling channels. Again, the security exposure can
simple datatypes (NUMBERCHAR), to more complex be reduced by restricting the operation, and by auditing
expressions (SALARY > 0), to arbitrary business rules. possible attacks.
The value constraints available in ANSI SQL Adden-
dum I correspond closely to a SQL 'WHERE" clause; In a more complex model, value constraints may be
SQL triggers are often used to implement more complex defined at any access class, and any constraint applies
business rules over multiple tuples. only to data which is dominated by the constraint. Thus
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a constraint defined at the access class of the object A third option is to define rules to reference only a
definition might apply to all data, but a constraint de- single access class. The earlier example might be split
fined at a higher access class would apply only to higher into two separate rules, one that states that unclassified
level data. This results in an obvious inconsistency and salaries cannot exceed $150,000, and another stating that
integrity violation - a user at the highest access class sensitive salaries cannot exceed $50,000. This satisfies
would observe that not all visible data would meet all both integrity and security, but requires additional ef-
visible constraints. fort in design and development

Triggers can be used to define more complex rules, such TRANSACTION INTEGRITY
as the following trigger which attempts to enforce the
rule that the total company payroll cannot exceed The transaction integrity property requires that all steps
$200,000. in a transaction be committed as an atomic unit, so that

CREATE TRIGGER CASH_FLOW either all parts are committed or all parts are rolled back.
AFTER INSERT OR UPDATE OF SALARY ON EMP A security conflict may arise if a single transaction is
FOR EACH ROW designed so that some steps must perform write opera-

DECLARE tions at different access classes.
totalsalary EMP.SALARYTYPE
payro11_too_high EXCEPTION;BEGaN One example of such a transaction arises when a rela-

SELECT SUM(SALARY) INTO total_salary tionship between elements in an entity is classified. One
FROM EMP; way of classifying the relationship is to implement the
IF total_salary > 200000 way of classifying the relationship i i t the
THEN RAISE payrolltoo_hiqh; entity with two tables, and the relationship witha third

END: table. The example below shows the EMP table imple-
mentation suggested by [81 where employees and sala-

If the rule is meant to enforce the rule across all access ries are both unclassified, but the association of an
classes, then there are two possible options. The first employee with a salary is sensitive.
option is to allow the trigger access to all data, including
data above the user's access class. This approach is CREATE TABLE EMP(

flawed, since the trigger might be used to leak informa- EMPNO NUMBER PRIMARY KEY,
ENA4E CHAR(20 NOT NULL)tion to the user.

CREATE TABLE SAL(

The second option is to only allow the trigger access to SO NUMBER PRIMARY KEY,

data readable by the user. This eliminates the security SALARY NUMBER)

problem by preventing full enforcement of the rule. In CREATE TABLE EMPSAL (
the example above, the trigger would only raise an EMPNO NUMBER REFERENCES EMP (EMPNO),

exception where the total salaries visible to the user S# NUMBER REFERENCES SAL (S#))

exceeded $200,000. An unclassified user would be able
to add total salaries up to the full $200,000 regardless of Adding a new employee, an operation which might
any salaries at higher access classes. The trigger would often be considered a single logical transaction, requires
raise an exception for the first user with a clearance high inserting unclassified records in the EMP and SAL ta-

enough to see the rule violation. bles, and a sensitive record in the EMPSAL table to make
the sensitive association between the employee and his

This behaviour of MLS triggers illustrates the important salary.
difference between the use of triggers and constraints
for enforcing integrity rules. The utility of declarative The simplest approach is to eliminate multilevel trans-
constraints, including primary and foreign key and actions from the application. This might be done by
value or domain constraints, is that the constraint de- splitting a single logical transaction into individual

dares an invarient property, detailing the meaning of a transactions at each access class. The transaction above

consistent state. If any declarative constraint is violated, to add an employee might be processed as separate
the database is not in a consistent state. Applications unclassified and sensitive transactions. The drawback

can safely rely on declarative constraints. Triggers, how- is that splitting transactions may necessitate a redefini-

ever, are procedural and event-based. The existance of tion of a consistant database state: between the two

a trigger says nothing about the current or consistent transactions a sensitive user will see an employee with
state of a database, but merely specifies what happens no salary and a salary with no employee. This approach
during a transition from one state to the next. may be forced on a transaction if the database supports

neither changing the access class of an existing subject
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nor any form of writeup. The remaining approaches CONCLUSION
depend on one or both these capabilities or on some
knowledge of what data is read and written by the It is not possible to obtain both perfect data integrity and
trantsaction. perfect multilevel security. Furthermore, the industry

trend is towards supporting greater integrity enforc-If the highest access class data read by a transaction i ment capabilities. A variety of methods have been de-
dominated by the lowest data written, than the ransac scribed here which show the extremes of maintaining
tion may be carried out at the highest required read either complete integrity or the prospect of complete
access class and all write steps may be carried out as scrta ela oeitreit rdofpit

writ-upopeatins. f curs, SL opratonssuc as security, as well as some intermediate tradeoff points
write-up operations. Of course, SQL operations such as which may allow greater latitude to particular applica-
DELETE and UPDATE themselves do not qualify as tions in choosing an appropriate balance. Integrity ispure write operations, since the data to be modified one of the principle benefits of a DBM~S, but the use of

must first be read. Also, while write-up may not present the integrity features must be carefully scrutinized for

a threat to operating system security, a database appli- non-obvious securie flaws.

cation may need to limit write-up for integrity reasons ty

or for indirect security reasons. Applications often im-
plicitly associate a higher access class with greater integ- REFERENCES
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USING POLYINSTANTIATION IN THE REAL WORLD
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This paper describes an unusual implementation of polyinstantiaton that addresses key functional and security
requirements while avoiding several major disadvantages typically associated with a polyinstantiated database.

1 Background

The United States Transportation Command Military Airlift Command (USTRANSCOM/MAC) is a testbed for
the Joint Multilevel Security (MLS) Technology Insertion Program (TIP). The overall goal of the MLS TIP is
to develop and deploy technologies and components that will allow the Department of Defense (DOD) to meet
operational and MLS requirements for their command and control systems. As a testbed for MLS technology,
USTRANSCOM/MAC is playing a lead role within DOD in attempting to field an operationally usable,
B l-certifiable MLS system, referred to as the Command and Control NILS (C2 MLS) Prototype. 1 A key
characteristic of this system is its deliberate use of polyinstantiation. 2

2 Environment

Two single-level, system high systems at USTRANSCOM/MAC manage flight schedules, aircraft location
information, readiness data, cargo data, and supplies and fuel requirements. One system operates at the
Sensitive Unclassified level while the other operates at the Secret level. A cleared user must retrieve data from
both systems to obtain a complete status of USTRANSCOM/MAC assets.

The C2 MLS Prototype is being developed to provide USTRANSCOM/MAC command center personnel with a
single unified view of data and to reduce system duplicity. This prototype is targeted to manage Sensitive
Unclassified and Secret information, and to permit online access for both cleared and uncleared users. A B l-
targeted database management system (DBMS) and operating system, the SYBASE Secure SQL Server and
DEC's Security Enhanced Virtual Memory System (SE/VMS), respectively, are being integrated into the system
architecture. 3 A trusted networking component is scheduled to be selected and integrated into the prototype in
1992.

Digital Equipment Corporation (DEC) is under contract to USTRANSCOM/MAC to serve as the
integration and development contractor for the Prototype (Contract Number Fl 1623-89-D0007). MITRE is
under contract to the Defense Information Systems Agency (DISA) to provide security engineering support
to USTRANSCOM/MAC (Contract Number DAAB07-91-C-N751).

2 Polyinstantiation is the simultaneous existence in a database of different versions of data with the same
primary key, but at different security levels.

3 At the time this paper was written, the National Computer Security Center (NCSC) had not completed a
formal evaluation of either product.
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3 Key Requirements

Several key USTRANSCOM/MAC data management and data display requirements had a significant affect on
the design and management of polyinstantation in the prototype. These requirements were:

"* Support cover stories in order to provide uncleared users with sufficient data to perform their jobs,
while protecting the mission's Secret data and preventing inferences about that data.

"* Maintain data element labels to facilitate users making element-level disclosure decisions from their
terminals.

"* Support screen formats that are similar to those supported by the system high systems to reduce the
training required to transition to MLS operations [DONC90]. Such formats require that
polyinstantiated tuples be collapsed into a single composite representation prior to being displayed.

"* Define and enforce classification constraints to control the sensitivity of data values assigned to data
elements, and to control the labeling of data elements comprising a data aggregate within a tuple.

These requirements have been satisfied by the C2 MLS Prototype. Two requirements, cover stories and data
element labels, are directly supported through polyinstantiation. Another requirement, single composite
representations of polyinstantiated tuples, is supported by collapsing polyinstantiated tuples into a single logical
structure. The remaining requirement, classification constraints, strictly controls the data composition of
polyinstantiated tuples. All solutions are implemented with trusted application software. Implementation
details appear in the following paragraphs.

4 Implementation Details

4.1 Cover Stories

In the context of the USTRANSCOM/MAC C2 MLS effort, a cover story describes a minimal set of
information that is sufficient for uncleared users to perform their job. An example of a cover story is Sensitive
Unclassified information indicating a plane is on a mission. The fact that a plane is on a mission must be known
to USTRANSCOM/MAC flight planners and schedulers operating in a Sensitive Unclassified session, so they
do not attempt to schedule the plane for another mission. While the data indicating the plane is on a mission are
factual, mission-specific data elements may contain values that are fictitious. The actual or "true"
mission-specific details are stored in a Secret tuple. The need for multiple tuples to completely describe all data
about a mission is readily supported through polyinstantiation.

In the USTRANSCOM/MAC C2 MLS prototype, polyinstantiation is supported through trusted application
software and not through the DBMS. This trusted application software enforces several restrictions on
polyinstantiation. The Sensitive Unclassified tuple is conceptually the foundation upon which a Secret tuple is
built, such that a Secret tuple is created only through the polyinstantiation of a Sensitive Unclassified tuple.
Additionally, the Secret tuple contains only the primary key value and the data element values that were updated
by the Secret user. The remaining columns contain null values. This is done to minimize data replication
within the database. (This is the case for most but not all relations in the database. Exceptions include relations
that hold itinerary data and remarks information. In these few instances,classified tuples are allowed to exist
without underlying Sensitive Unclassified tuples.)
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4.2 Data Element Labels 4

An objective of the the prototype is to provide trusted output labeling, such that for retrieval, data element labels
are dominated by the user's session level, and for update, the data element label is equal to the user's session
level [4]. In order to realize data element labels at the user and program interfaces, the DBMS should ideally
maintain them. However, label granularity for the SYBASE Secure SQL Server is at the tuple level. This
dichotomy between product capability and functional requirement has been addressed by.minimizing replicated
data in a Secret tuple such that, except for the primary key, only Secret data reside in a Secret tuple. Thus,
trusted application software can derive data element labels from tuple labels.

4.3 Classification Constraints

In the C2 MLS prototype, classification constraints specify the range of sensitivity levels for columns and groups
of columns in a table. Classification constraints are defined in metadata extensions and enforced by trusted
application software. Metadata extensions define each data element as one of three types: fixed, swing, or
critical swing. Fixed data elements may contain only Sensitive Unclassified values. In Figure 1, the data
elements "Sched Dest" and "Sched DTG" are fixed. Swing data elements may contain either Sensitive
Unclassified or Secret values. A critical swing data element may contain either Sensitive Unclassified or Secret
values; when it contains Secret data, it causes a predefined set of other swing data elements, referred to as a
swing group, to be reclassified as Secret. In Figure 1, Polyinstantiated Tuple, the data element "Actual Dest" is
a critical swing data element and is associated with the swing data element, "Actual DTG."

A Sensitive Unclassified tuple contains fixed data values and optionally, swing and critical swing values. If a
polyinstantiated Secret tuple exists, the swing and critical swing values in the Sensitive Unclassified tuple
represent a cover story. Blank values are permitted for swing and critical swing values in Sensitive Unclassified
tuples. In Figure 1, the values assigned to "Actual Dest" and "Actual DTG" in the Sensitive Unclassified tuple
(designated by the tuple label (ML) "U") are cover stories.

A Secret tuple will exist if there are Secret values for critical swing and swing data elements. Sensitive
Unclassified fixed values are not replicated in the Secret tuple; instead, null values are stored. In Figure 1, when
"Actual Dest" is changed to "Baghdad," a Secret tuple (designated by the tuple label "S") is created. The
primary key is copied from the "U" tuple, null values are assigned to the fixed data elements, "Baghdad"
becomes the value for the critical swing data element "Actual Dest." and the value for "Actual DTG" is
replicated and stored as a Secret value because of its association with "Actual Dest."

4.4 Single Composite Representation of Data

When a Secret user retrieves data, trusted application software combines polyinstantiated tuples and builds a
composite representation, called labeled data objects (LDOs), for display to the user. Tuples are retrieved in the
order of their sensitivity from Sensitive Unclassified to Secret. As shown in Figure 2, Labeled Data Objects,
trusted application software overlays the Sensitive Unclassified data in the composite representation with the
Secret data, and data element labels are generated from tuple labels (data element labels are shown under the
"FL" columns). Null values are ignored and do not overlay data values. Users operating at the Sensitive
Unclassified level see only data from the Sensitive Unclassified tuple, and users operating at a Secret level see a
single composite representation of data as represented in the LDOs. This approach is reasonable for the

4 In the current implementation of the C2 MLS Prototype, data element labels that are displayed to users,
must be considered advisory since several trusted components, including trusted networking and display
management, are not integrated into the Prototype.
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TL MISSION ID SCHED DEST SCHED DTG ACTUAL DEST ACTUAL DTG

U 123A TEL AVIV 0830 TEL AVIV 0900

Existing Sensitive Unclassified Tuple

S-USER:
Change ACTUAL DEST To *BAGHDAD'

_____ FIXED FIXED SWINGA SWING

TL MISSION ID SCHED DEST SCHED DTG ACTUAL DEST ACTUAL DT

u 123A TEL AVIV 0830 TEL AVIV 00

S 123A NULL NULL BAGHDAD 0900

After Trusted Application Software Inserts Secret Tuple

Figure 1. Polyinstantiated Tuple

USTRANSCOM/MAC environment because Secret data is considered more accurate and to have greater
validity and importance than Sensitive Unclassified data.

5 Design Advantages

The prototype design satisfies the requirements outlined in Section 3. and offers several advantages over other
designs incorporating polyinstantiation. These advantages include:

"* Improved database integrity and accurate data element labels
"* Reduced user confusion
"* Reduced disk space usage

One of the problems with replicating Sensitive Unclassified data in Secret tuples is the update transaction, that
replicates the data, may fail. If transaction controls are inadequate to react and restart the update, the database
becomes inconsistent. A second problem with replicating Sensitive Unclassified data in Secret tuples is the
difficulty of preventing cleared users from updating the Sensitive Unclassified data in the Secret tuple. Such
updating results in the data migrating upwards in classification. The C2 MLS prototype design addresses these
database integrity and labelinR issues by replicating only the Sensitive Unclassified primary key across tuples,
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Figure 2. Labeled Data Objects

and enforcing data element classification constraints to prevent the data values from migrating upwards in
classification.

Since trusted application software builds a single composite representation of Sensitive Unclassified and Secret
data, cleared users do not need to view multiple tuples to ascertain the complete status of an entity. This single
composite representation of data permits screen formats from the current system high system to be retained. By
retaining these screens, users will continue to interact with a user interface that is familiar to them, even though
the actual underlying system has changed significantly.

Lastly, the amount of disk space storage for the database is reduced. In the MLS prototype design, a null value
is stored for each fixed data element in a Secret tuple. By storing a null value instead of variable length text
values, reasonable disk space savings can be expected when compared to other polyinstantiated designs with
significant data replication.
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6 Design Disadvantages

While the MLS prototype satisfies the requirements outlined in Section 3, there are several disadvantages
associated with this design. These disadvantages are:

"* Size and complexity of the trusted computing base (TCB)
* Hierarchical sensitivity levels and data validity rules
"* Overhead to build composite representations of data

In the prototype design, trusted application software had to be developed to provide MLS services that were not
supported by the trusted COTS software. Examples of these services include composite displays, label
management, polyinstantiation with minimal data replication, and the specification and enforcement of
classification constraints. Since many of these services enforce various portions of the C2 MLS security policy
[DCA88], the trusted application software significantly extends the system TCB. The trusted application
software will need to be subjected to rigorous certification analysis and testing to validate its correct execution.

A second disadvantage associated with this design is that it is viable only in those systems with hierarchical
sensitivity levels and a hierarchical correspondence to the validity of data. For example, if a Secret tuple exists,
the Secret values are assumed to have greater validity than the Sensitive Unclassified values, and the values
appear in place of Sensitive Unclassified values in a composite representation.

Another disadvantage specific to this design is the processing overhead incurred in building composite
representations of data from polyinstantiated tuples. Composite representations of data are built to minimize the
number of tuples a cleared user must inspect to ascertain all information about an entity, and to permit screen
formats from the current operational systems to be retained.

7 Deletion and Downgrading Anomalies

While this implementation of polyinstantiation has overcome several shortcomings, several processing
anomalies have been introduced. Two such anomalies are associated with tuple deletion and downgrading.

The tuple deletion anomaly is associated with Sensitive Unclassified tuples. For example, assume that a
Sensitive Unclassified tuple and a polyinstantiated Secret tuple exist in the database. If an uncleared user is
allowed to delete the Sensitive Unclassified record, the null values in the Secret tuple can no longer be resolved.
If an uncleared user is prevented from deleting the Sensitive Unclassified tuple because of the existence of the
Secret tuple, the uncleared user can infer that the Secret tuple exists. The prototype's interim solution to
deleting Sensitive Unclassified tuples allows both cleared and uncleared users to request the deletion of
Sensitive Unclassified tuples. If a Secret tuple exists, the user is informed that the delete operation was denied.
As the prototype matures, the developers will attempt *to eliminate this inference channel for uncleared users.

The anomaly associated with the prototype's downgrading approach is the need to create a new tuple instead of
r--labeling an existing one. Since both tuples contain information that must be present in a new downgraded
tuple, a Sensitive Unclassified tuple and its polyinstantiated Secret tuple must be collapsed into a single
composite representation. This composite representation replaces the current Sensitive Unclassified tuple.

An issue associated with the downgrading approach is whether the COTS DBMS can support required
downgrading functionality. USTRANSCOM/MAC's approach for assigning a sensitivity label to mission data
is to reduce the sensitivity of mission data as the mission progresses. As a mission is planned, data supporting
the mission are classified at a very restrictive level. As a mission gets under way and then is completed, the
information's sensitivity is reduced until it becomes unclassified. To facilitate a downgrading approach that
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mirrors USTRANSCOM/MAC's mission planning and execution steps, a trusted DBMS must support a set-
based multi-table downgrade utility. Since the initial release of the SYBASE Secure DBMS downgrades an
entire table, a set-based approach had to be implemented with trusted application software. This trusted
application software coordinates the execution of both Sensitive Unclassified and Secret processes to retrieve
the old tuples, build the new composite representation, update the Sensitive Unclassified tuple, and delete the
old Secret tuple.

8 Summary

This paper has described a prototype implementation where polyinstantiation has been deliberately used to meet
several operational requirements. Its design is such that commonly considered handicaps have been somewhat
overcome and important advantages can be identified. Conversely, this design has introduced several issues
that require analysis and resolution. As prototyping continues, reasonable solutions will hopefully be identified
and implemented.
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1 INTRODUCTION

The notion of a primary key is considered a fundamental concept in the classical (single-level)
relational model. For example, it forms the basis for several normal forms and is used when the
database schema is designed. The primary key is used to maintain integrity of relations. It is also
used for storage and retrieval purposes.

Unfortunately, the concept of a primary key does not extend to multilevel relations in a straight-
forward way because of two factors: (a) the *-property must be preserved which prevents any write
downs, and (b) signaling channels must be avoided. These security considerations have lead to the
notion of polyinstantiation in multilevel relations [2].

Polyinstantiation comes in several different flavors [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 121. There are
significant differences between these approaches and debate continues about the correct definition
of polyinstantiation and its operational semantics. However, in each case polyinstantiation fails to
preserve the basic requirement of a primary key that there be one and only one tuple per primary
key value in a relation. Polyinstantiation forces a relation to contain multiple tuples with the same
primary key, distinguishable by their classifications or by non-primary key attribute values.

Since polyinstantiation significantly complicates the semantics of multilevel relations (particularly
for high users), recently some solutions have appeared which attempt to do away with polyinstan-
tiation completely [1, 13, 14]. In this paper, we take another step along this direction, and examine
ways to preserve primary key requirements in multilevel relations. Of course, any solution we give
will have to be secure and free of denial-of-service problem.

The organization of the remainder of this paper is as follows. In section 2 we briefly review the
notion of primary key in classical (single-level) relations. In section 3 we show how polyinstantiation
arises in multilevel relations. In section 4 we explore alternatives to polyinstantiation that help us
enforce primary key requirements in multilevel relations. Finally, the conclusion is given in section
5.

2 PRIMARY KEY IN SINGLE-LEVEL RELATIONS

The standard relational model is concerned with data without security classifications. Data are
stored in relations that have well-defined mathematical properties. Each relation has two parts as
follows.

I. A state-invariant relation scheme R(A1 , A 2 ,... ,A.), where each Ai is an attribute over some
domain D, which is a set of values.

2. A state-dependent relation r over R, which is a set of distinct tuples of the form (a,, a2,... 'a,v)

where each element a0 is a value in domain Di.
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Starship Objective Destination TC

Enterprise U Expl'ration U Taios U U
Voyager S ISpying S Mars S 1 S I

Figure 1: SODs

J Starship I Objective I Destination I TC]

IEnterprise U IExploration U ITalos U JU

Figure 2: SODu

Not all possible relations aTe meaningful in an application; only those that satisfy certain integrity
constraints are considered valid.

The notion of primary key is central to the relation model. Before we define it, however, we need
to give a definition for a candidate key:

We say X C {A,, A 2,.. ., A.} is a candidate key of R if any relation r for R at all times satisfies
the following two properties:

Uniqueness Property. The relation r does not contain two distinct tuples with the same values
for X.

Minimality Property. No proper subset Y of X satisfies this uniqueness property.

A primary key of a relation scheme R is a candidate key of R. It is possible that a relation
scheme has more than one candidate key, in which case one of the candidate keys must be chosen
and designated as the primary key.

3 POLYINSTANTIATION

While the notion of a primary key is simple and well understood for classical (single-level) relations, it
does not have a straightforward extension to multilevel relations. To illustrate, consider the relation
scheme SOD(Starship, Objective, Destination) where Starship is the primary key and the security
classifications are assigned at the granularity of individual data elements. Suppose the Secret and
Unclassified views of SOD are as shown in figures I and 2, respectively.

Suppose that an U-user" who sees the instance in figure 2 wishes to insert a second tuple (Voyager,
Exploration, Talos) to SODu. If we were to enforce the primary key requirement, this insertion by
the U-user will be rejected (since it conflicts with an existing tuple in SODs). However, since
this rejection will create a signaling channel, both tuples (Voyager, Spying, Mars) and (Voyager,
Exploration, Talos) are allowed to co-exist in SODs, as in figure 3, in violation of the uniqueness
requirement. This is one type of polyinstantiation, called entity polyinuatntiation: A relation contains
two or more tuples with the same primary key values, but having different access class values for
the primary key.

There is auother form of polyinstantiation, called element polyinstantiation. With element polyin-
stantiation, a relation contains two or more tuples with identical primary key and the associated
acct's class values, but having different non-primary key values, as shown in the relation in figure
4. The objectives and destinations of the starship Enterprise are different for U- and S-users.

"Strictly speaking we should be saying subject rather than user.
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Starship I Objective I Destination I TC
Enterprise U Exploration U Talos U U
Voyager U Exploration U Talos U
Voyager S Spying S Mars S ES

Figure 3: SODs

Starship I Objective Destination ITC
Enterprise U Exploration U Talos U FU]
Enterprise U Spying S Rigel S S

Figure 4: SODs

Both entity and element polyinstantiation can occur in basically two different ways:

1. A high user attempts to update data which conflicts with the existing low data. Since over-
writing the low data in place will result in a downward signaling channel, the tuple is polyin-
stantiated

2. An opposite situation occurs where a low user attempts to insert data which conflicts with
existing high data. Since rejecting the update is not a viable option because it establishes a
downward signaling channel, the updated tuple is polyinstantiated to reflect the low update.

4 PRIMARY KEY IN MULTILEVEL RELATIONS

In this section, we explore how we can enforce primary key requirements in multilevel relations
without creating a downward signaling channel in the process.

4.1 A Simple Solution

There is a completely obvious way to preserve primary key requirements in multilevel relations.

1. Whenever a high user makes an update which violates the uniqueness requirement, we simply
refuse that update.

2. Whenever a low user makes a change with conflicts with the uniqueness requirement, the
conflicting high data is overwritten in place by the low data.

Returning to the example of the previous section, when the U-user inserts the second tuple
(Voyager, Exploration, Talos) to SODu shown in figure 2, the conflicting second tuple in SODS in
figure I is substituted by the newly inserted tuple. As a result both U- and S- users see the instance
shown in figure 5. On' the other hand, suppose a S-user wants to insert the tuple (Voyager, Spying,
Mars) to SODs in figure 5. This update is simply refused. Thus, in both cases primary key values
in SOD uniquely identify the tuples in the multilevel relations.

It is not difficult to see that this simple solution preserves the uniqueness requirement in multilevel
relations. This solution is secure in the sense of secrecy and information flow. It is our view that
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Starship Objective Destination TC

Enterprise U Exploration U Talos U IUI
Voyager U Exploration U Talos U U

Figure 5: SODs = SODu

while this solution may be acceptable in some specific situations, it is clearly unacceptable as a
general solution; it can lead to serious denial-of-service and integrity problems. Therefore, we now
look for other alternatives which do not suffer from these problems.

4.2 Dealing with Entity Polyinstantiation

4.2.1 Single Access Class for the Primary key

A multilevel relation is created by using a data definition statement, similar to the following
statement:t

CREATE TABLE SOD ( Starship CEAR(IS) NOT NULL [U:S),
Objective CHAR(15) {U, TS},
Destination CHAR(20) [U:TS),
Primary Key (Starship ) );

Here the domain of the access class of the primary key Starship has been specified as a range
with a lower bound of U and an upper bound of S. As we saw in the previous section, this leads to
entity polyinstantiation. Thus, one simple way of eliminating entity polyinstantiation is to have the
domain of the access class of the primary key consist of a single element.

Thus if we create the SOD relation as follows, SOD will not have any entity polyinstantiation.

CREATE TABLE SOD ( Starship CHAR(15) NOT NULL (U)
Objective CHAR(IS) {U, TS},
Destination CHAR(20) EU:TS],
Primary Key (Starship ) );

It is possible that in some situation names of some starships must remain Top Secret, in such a
case we can use the following solution.

4.2.2 Partitioning the Domain of the Primary Key

Another way to eliminate entity polyinstantiation is to partition the domain of the primary key
among the various access classes possible for the primary key. For our example, we can introduce a
new attribute, called Starship#. Whenever a new tuple is inserted, we enforce the requirement that
all th; Starships numbered between 1 and 1,000 will be unclassified, those numbered between 1,001
and 2,000 will be confidential, and so on.

In SQL-like language, the SOD schema should be created as follows:

tThe notation [L:H] specfies a range of security classes with lower bound L and upper bound H. The notation
{X,Y,Z} enumerates the allowed values for the security class a one of X, Y or Z.
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CREATE TABLE SOD
( Starship# SMALL INTEGER NOT NULL (U:TS]

Starship CHAR(15) NOT NULL [U:TSJ
Objective CHAR(0S) {U, TS},
Destination CHAR(20) [U:TSJ,
Primary Key (Starship# ),
CHECK (User Access class = 'U' AND Starship# BETWEEN 1 AND 1000),
CHECK (User Access class = 'C' AND Starship# BETWEEN 1001 AND 2000),
CHECK (User Access class = 'S' AND Starshipt BETWEEN 2001 AND 3000),
CHECK (User Access class = 'TS' AID Starship# BETWEEN 3001 AID 4000) );

4.3 Dealing with Element Polyinstantiation

It is possible to eliminate element polyinstantiation securely without sacrificing either integrity or
availability. We show how this is done for the SOD example. For complete details, we refer the
reader to [13]. This solution by Sandhu and Jajodia meets the following requirements.

1. There are no downward signaling channels.

2. The simple security and the *-properties is enforced for all subjects, i.e., no trusted code can
be used.

3. There are no temporary inconsistencies.

4. There is no denial of data entry service to high users.

Consider once again the following relation SOD where Starship is the primary key. We assume
that the Starship attribute is always unclassified, so there is no entity polyinstantiation.

Starship Objective Destination TC

Enterprise U Exploration U Tals U

Consider the following scenario. Suppose a S&user attempts to modify the destination of the
Enterprise to be Rigel. We cannot polyinstantiate even temporarily, so we must reject this update.
There is no denial-of-service to the S-user since the S-user can obtain service as follows.

Step 1. The S-user first logs in as a U-subject and marks the destination of the Enterprise as
restricted giving us the following relation.

Starship I Objective Destination TO

Enterprise U IExploration U restricted U U

The meaning of restricted is that this field can no longer be updated by a U-user. U-users can
therefore infer that the true value of Enterprise's destination is classified at some level not dominated
by U.

Step 2. The S-user then logs in as a S-subject and enters the destination of the Enterprise as
Rigel giving us the following relations at the U and S levels, respectively.

Starship I Objective I Destination TC

Enterprise U Exploration U restricted U U

Starship Objective Destination TC
Enterprise U Exploration U Rigel S S
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One can argue that step 2 introduces a signaling channel. Fortunately, this is not a particularly
harmful channel. Here a trusted S-user is in the loop who presumably will ensure that the channel is
not exercised wantonly, but rather that this inference is permitted only when the real world situation
is actually so. Such a channel with trusted humans in the loop can be exercised only by Trojan
Horses that are capable of manipulating the real world. This entails the manipulation of real trusted
people making real decisions and not merely the manipulation of bits in a database.

We refer the reader to (131 for additional examples and complete details.

5 CONCLUSION

In this paper we have shown that there are ways to enforce primary key requirements in multi-
level relations. The methods we have listed eliminate problems that arise from polyinstantiation
completely. These methods may be eminently suitable in many applications.

Yet we wish to remind the reader that there are situations where polyinstantiation is desirable.
There is a real need for cover stories in the multilevel world, and polyinstantiation provides a simple
way of satisfying this need. Moreover, we envision applications (particularly in an intelligence
environment) where information is coming from different sources, bearing different classification.
The information may sometimes be contradictory; however, it must be stored in the database. An
analyst can make sense out of the confusing mess. It is desirable to have polyinstantiation for such
situations.
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Abstract:

Poly instantiation is allowed in most multilevel database systems to prevent a
covert channel from opening up in an otherwise secure environment. It is also
used in some systems to provide cover stories or "shades" of information. The
latte- uses of polyinstantiation, however, have the potential to open up inference
cheiinels allowing an unauthorized user to obtain classified information.

These findings were noted during research on inference control. The analysis we
use-' to detect inference paths indicated potential inferences where none appeared
to exist. This was attributed to the inability of the analysis to understand the
con.-ept of polyinstantiation, and was almost dismissed. Further investigation
has now shown how polyinstantiation can, in some situations, provide an
infe Lence path where none previously existed.

Thi. is the first time polyinstantiation has been linked with the potential downward
flo,% of information in a multilevel secure system. Previously, polyinstantiation
was only seen as a way to prevent the downward flow of information.
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Introduction This paper shows how the intentional intro-
duction of polyinstantiation can itself lead to

Polyinstantiation has two primary purposes: the disclosure of information it is attempting
prevent covert channels and provide cover to protect; it is an illustration of "cover stories
stories1. The intentional introduction of that tell the truth."
polyinstantiation into a database falls under
the second category. Consider the following The goal here is to address a specific type of
scenario: inference; inference through polyinstantiation.

This paper will identify:
There exists an organization which interacts
with some collection of foreign countries. * How the intentional introduction of
Most of the related information is unclassified polyinstantiation can lead to inference
while some is sensitive. One branch of the •How it was discovered, and
organization (XYZ) has an unclassified
specialty of "Language." The classified user, - What is required to assure no
however, is shown more specifically that it's inference is introduced by the
specialty is "Russian Language." This is illus- polyinstantiation of a record.
trated below in figure 1.

ORGANiZATION Inference Analysis
Or-- Scialty Phone# Figures 2 and 3 set the stage for the inference

analysis mechanism.
XYZ Language S55-1234 U

Figure 2 represents the existing database by

uian g ethe relations that are defined. This model
- allows for multilevel relations at the tuple

level, where the container defines what range
of classification is allowed within that

Figure 1 relation. In this database there are three rela-
tions named Organization [U-C], Phonebook

The user bases the classification of these [U], and Education [U].
tuples on the classification guideline listed in Figure 3 represents the database attributes andappendix A.Fiue3rpeetthdaaaeatbtsan

how they are associated. All arcs represent a
Does this schema and it's contents violate the direct association between two attributes.
security policy? Perhaps. If this is the only The arcs are labeled bý the relation connecting
table in the database and if this information each pair of attributes . A path between two
cannot be exported or joined witi, information attributes (a and b) indicates that given a, there
existing elsewhere, then the answer i, ::3. As exists some set of joins which could
more relations are created and information is potentially produce b. With weighted arcs,
allowed to flow in and out of our database
system, the answer becomes more difficult to 2. in a nmo detailwe qsataton the ams am both directed and
answer. waghted (0 to i) thereby indicating mom acofasely the proba-

__ity that one atribme will uniquely identify another.

Exanple: og -4(1)-> phone means ow positively idenuifies
1. or "shades" of information. i.e. Smith is a Linguist at the unclas- phone. where phone -(.9)--> oig indicates there is a 90% probe-

sified level and a Russian Linguist at the confidetial level. bility that phone will corrctly imply oag.
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ORGANIZATION (0) [U-C] EDUCATION ME) [U]

O Specialty Phone PHONEBOOK (P) LJj Employee School Specialty.. .... .................................. .......... m l y h n .. ............. ....................... I...................................
MADC #Maintmnance 

SSS-JUhL u ion"A ____

Sih SSS-1234........... .... ....

path 1: org (0) specialty [U-C]
padh2: org (0) phone (OxP) emp (PxE) specialty [U]

Figure 2

this potential is described as a probability almost dismissed as the mechanism's inability
between 0 and 1. The system security officer to recognize that the direct paths between
determines what threshold (if any) the security org-specialty and org-phone are really repre-
policy will tolerate. sented by the same path (0). If the path

between org and specialty through 0 is
Consider the relationship between org and c!assified, then so is the path between org and
specialty in figures 2 and 3. Is there an infer- phone. Unless we allow polyinstantiation.
ence problem between these two attributes in
the present schema? By definition1, an
inference problem exists if there are multiple How Polyinstantiation can
paths between two attributes such that the Lead to Inference
paths have potentially different classification
levels. Looking at figure 2 we see that there Going with the idea that polyinstantiation
are two paths from org to specialty. There is could give us two differently classified paths
no inference problem because classification of between org-specialty and org-phone, the task
a tuple in 0 prevents access to O.phone for the was to determine how this could create a secu-
unclassified user, hence there is no way to join rity hole. By our earlier definition, the exist-
it with P.phone and the path using 0, P and E ence of these two paths did create a potential

is broken. In this model it appears that there inference path because now there was a
cannot exist two paths from org to specialty
having different classifications. Either there
will exist one classified path, or two unclassi-
fied paths.

During analysis, however, a mechanism we
had begun to prototype indicated an inference
problem. The inference mechanism used the

representation shown in figure 3. As shown
in the graph there are two paths between org
and specialty, and they have potentially
different classifications. This result was

____ ____ ___ ____ ____ ___low path
................ high path

1. Appendix B formally definitions one class of inference: infer-
ence through w •ry path rysi,. Figure 3
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ORGANIZATION (O) U-C] EDUCATION (E) [U

Og Spllt Phone PHONEBOOK (P) [f Em.loe School Specialtv

JAC Maintenance 553- EmploUee Phone .- *... . .

IM _

___1_SS13_ U____ Si tham 355U 124 or..___......__....__...... .....
S....... 

.i. .... 
u ar to Ru..a.. 

. .

path 1: org (0) specialty [U-C]
path2: org (0) phone (OxP) emp (PxE) specialty [U]

Figure 4

potentially classified path between org and Database Design
specialty through the path org (0) specialty,
and a potentially unclassified path between org The problem here stems from database design,
and specialty through the path org (0) phone and the decision to use the correct phone num-
(OxP) emp (PxE) specialty. It was not ber for the organization's unclassified tuple.
difficult to create an example to substantiate
this, and it is shown in figure 4. The user maintaining XYZ knows that it is the

association between org and specialty that is
Figure 4 shows that the polyinstantiation of potentially sensitive. He "knows" that the
tuple XYZ at the unclassified level introduces association between org and phone is not
the inference channel. In short, it gives the sensitive.
"hooks" necessary for an unclassified user to
make the inference (i.e.: O.phone). The user But this user isn't aware of the entire design of
querying the system sees that XYZ's specialty the database. In fact, he doesn't know that
is "Language," but more specifically it is the relations Phonebook and Education
possible that it's specific specialty is "Russian exist. It is easy to see in this example that
Language." 1  supplying the correct phone number in con-

junction with the design of this database is
If the polyinstantiated row were meant to pro- unsecure. It is not likely that the average
vide a more anonymous cover, the inference user will be able to identify similar security
would be even more evident. Consider that holes given a limited view of a large database
instead of "Language" the cover was system. Even if a single user were required
"Maintenance." Now an unclassified user to oversee the entire database schema, they
could query the system and see that XYZ's could not analyze all paths without an
specialty is "Maintenance" but an employee's automated tool.
specialty [who works for XYZ] is "Russian
Language." The user is likely to deduce not The purpose of an inference tool is to identify
only the true specialty of XYZ, but also the poor database design and make the user aware
fact that XYZ considers this information of potential inference paths. Ideally, an
sensitive enough to hde. inference engine should prevent the user from

creating a table that would lend itself to an
illegal inference path. Alternatively, the
inference engine could monitor the contents of

1. If a substantial number of employees have the specalty of the database based on design -me
"Russian Language" then the inference becomes stronger
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analysis. In this case the engine would allow each maintained by a different administrator
the existence of a poorly designed database, having little or no knowledge of the overall
but would not allow the insertion of data that database design. The HealthBenefits table
would allow a potential inference path to maintains an employee's insurance carrier, the
become an actual inference path. employee's phone number, and other related

information. The EmpAssignment table
maintains data on an employee's current

Types of Polyinstantiation assignment. The fact that an employee is
working in organization ABC is not normally

The primary focus on polyinstantiation Of considered sensitive. Jones, however, was
recent year has h been the polyinstantiation of just assigned to organization ABC and he is
primary key values (fig. 5), and polyinstantia- expected to make several trips out of the
tion of elements having the same primary key country. To maintain a low profile it is
(fig. 6). decided the relationship between Jones and

ABC should be considered confidential, and is
Flight# ISlo Fih C] reo reflected in the EmpAssignment table.

I172395 [S] ISupplies [C] 1[S] { 7239mp[.ls.Asiigelment

[ 72395 [C1Suies ["C] 1172395 1TS ] NMI HealthBenefits [U] Emp.Assignxnent [U-C]
Figure 5 Figure 6 Em Phone Plan Phone

These notions were first introduced by SRI llc 555-1234 Bl. 555-1234 [C]

during their SeaView project [4,5]. It is likely si 5551234 H SUl

that these two classes of polyinstantiation have
received so much attention because they com-
plicate the SeaView implementation (namely, Figure 8
the reconstruction of the relational tables). An unclassified user performing the following

A more general type of polyinstantiation is direct query on EmpAssignment will not be

simply data polyinstantiation (fig. 7), which given Jones' organization:

encompasses the two previously mentioned. Select EA.org

Flight# Cargo From EmpAssignment EA
72395 [C I Weapons (q h [CW Where EA.emp = "Jones";

The next query uses the fact that the phone
Figure 7 numbers of Jones and Smith are the same (and

Data polyinstantiation exists when two or polyinstantiated in Emp.Assignment):

more instances of an attribute share the same Select EA.org
value but at different security levels; the From HealthBenefits RB,
attribute need not be a primary key. This F m pHalthB ent EA
notion of polyinstantiation does not fall within EmpAssignment EA
the definition presented by SRI, but it is an Where HB.phone = EA.phone
important factor when considering inference, and HB.emp = "Jones";

To see how data polyinstantiation is associated This query will succeed in disclosing Jones'
with inference, consider the example in organization to the unclassified user. In this

figure 8. In this example there are two tables, case, one solution is to classify all phone num-
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bers in EmpAssignment which co-exist at the ai = org, aj = specialty, ak = phone
classified level. In a record level environ- A, = Jorg, specialty)
ment such as this, Smith's entire Emp.Assign-
ment record would be classified. Other A2 = {org, phone, emp, specialty)
solutions exist, such as classifying Jones' Rl = (0)
Health_Benefits record. Each of these solu-
tions can only be enforced at run-time; they R2 = (0, E, P}
do not solve ihe underlying design flaw. To pi = org (0) specialty
resolve the underlying design flaw the data-
base must be redesigned (i.e. strictly classify p2 f org (0) phone (OxE) emp (ExP) specialty
Emp.Assignment as confidential). org (0) phone E p2

-(L(p---C) L(P2=U))
Defining Inference Through
Polyinstantiation .*. Ip(org,specialty) = TRUE

The design flaw allowing polyinstantiation to Notice that we assign path classifications to
open an inference channel can be character- suit our needs. The only constraint is that the
ized by a relation whose attribute leads to an levels assigned are consistent with the range of
external attribute co-existing in the original possible values. For example, Organization
relation. can be assigned either unclassified (U) or con-

fidential (C) security levels however Phone-
Formally stated, potential inference through book is strictly unclassified. The fact that
polyinstantiation (Ip) in a database design is there exists a potentially classified path P, anddefinedl ,:

a potentially unclassified path p2 is a necessary

Ip(ai,aj) = [TRUE 13 plP2,akrAi,A2,Ri,R2,t ingredient to show the design is inherently
[p) = (r =p1 ,p2 ,ajrA1,A jR 1)R2 t flawed and could potentially breed inference.[P1 = ai (r) aj ff P(ai,ajAiRl)

A p2 = P(ai,ajA 2 ,R2) The actual tuple values shown in figure 4 are
A ai * aj * ak not used when determining the soundness of
A ai (r)ak e p2 the design. They are used here to illustrate
A "(L(Pl,t) < L(P2,t)] how a poor design could lead to an inference

path, via specific database instance.
Looking back at our example in figure 4, we
see that specialty (aj) is the attribute that is Where it is infeasible to eliminate potential
both external and local to Organization. inference paths, run-time analysis would
Phone (ak) is the attribute or "hook" that can monitor the contents of the database based on
be used in a path leading to specialty outside design-time analysis. Run-time analysis
of Organization. Using our definition, we see would substantiate when a potential inference
that a potential inference does exist. The val- path becomes an actual inference path.
ues used to substantiate this are shown below.

1. In this cnctmt* is used to deno a subpah.
L.& oft (0) phone org (0) phone (OME) anp (ExP) specialty

2. See Appendix B for definitions of P(a0,a.,A.R) and L(p)
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Resolving Inference Summary

Preventing inference has the same implica- Polyinstantiation, although useful in prevent-
tions as preventing polyinstantiation. The act ing a class of covert channels, has the potential
of prevention itself can be used to create a to open a new class of inference channels.
covert channel. In fact, our options are even This paper does not advocate the use nor
more restricted. One method of resolving prevention of polyinstantiation; it identifies a
polyinstantiation is to delete the more highly weakness of it. In short, polyinstantiation:
classified tuple [3]. This is not a solution to
inference, since by definition the user accesses • Complicates inference path analysis
only unclassified data to make the inference. • Must be taken into consideration at
Removing the classified table would only limit database design-time and possibly at
your knowledge of what classified information nm-time
the user might infer. Preventing inference - May provide an .inference channel
requires that some portion of the unclassified especially when used as a cover story
path be deleted or upgraded to a higher mechanism in conjunction with a
classification. Some classes of information poorly designed database
are inherently difficult to protect. It is impor- These factors must be taken into consideration
tant that system security is not based on the when deciding whether polyinstantiation
protection of these classes of information, should be allowed, and [if it is] what measures

There is a period of time between the creation need to be taken to ensure inference channels
of an inference channel and the use of that are identified and eliminated1 .
channel to compromise unauthiorized informa-tionn.l Fomprodesign e analssthatizperinfod- While creating cover stories, special care musttion. For design-time analysis that period is b ae hnplisataigdt.I
the time between creation of the relation and be taken when poy sialeng da
the query of information inserted into that sm ae tmyntb osbet rvdcover for each individual attribute. When notrelation. Although a potential inference canbelation. deted at d oesin-time, inference a essential for the plausibility of a cover, databe detected at design-time, the inference sol o eplisatae.We ti
channel cannot become active until data is should be pyntna ed ti
actually inserted into the relation. For run- essential the s old be examined t
time analysis the period is the time between ensure that the polyinstantiation does not
insertion of data and subsequent query of that compromise classified information.
information. It is during this period of time As shown in SWORD [81, polyinstantiation ofthathomeasuSWesDmust belytakentitoienso
that measures must be taken to ensure key values can be prevented. Additionally it
unauthorized information is not compromised is shown that cover stories can be imple-
through inference. mented using column or element level labeling

Inference prevention does leave us with the without the need for polyinstantiating primary
problem of covert channels. In an extreme key values. Their methodology, however,
problem of covert channels. In an ltextrne does not address polyinstantiation of non-key
case, the covert channel can be limited to one

bit of information by denying further access to values and their affect on inference channels.

the system. Other options exist and must be An inference tool is necessary to make the
identified in the trusted facility manual.
These options are themselves a separate issue
and are not addressed in this paper. 1. o r d c
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Appendix A
Mock Classification Guideline

"* An organization's name alone is not classified

"* An organization's specialty is not classified unless stated otherwise

"* The relationship between organization and specialty is confidential if its specialty is one
of the following:

"* Russian Language

"* Metalinguistics

"* Optical Fiber Transmission

"* Civil Engineering

"If the specialty falls within these classified areas, the following unclassified specialties
are to be used when referencing that organization to an unc'assified user

Classified SRecialty Unclassified Specialty Description

Russian Language Language
Metalinguistics

Optical Fiber Transmission Engineering
Civil Engineering

To provide consistency for the unclassified user, any record which relates organization
and specialty at the confidential level must be polyinstantiated at the unclassified
level. The record at the unclassified level will reflect the organization's unclassified
specialty.
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Appendix B
Definition of Inference Through Secondary Path Analysis
Following is a formal definition1 of potential inference using a non-weighted, non-directed graph

This definition does not consider the polyinstantiation of tuples at different security levels.

A Rath of length (n=1) is defined -.,:

P(a0,a 1,A,R) = [a0 (r1) a1 I a0 ,a1 E A

Aao* a

A a0 ,a1 r rl

A Cardinality(A) = 2

A Cardinality(R) = 1]

A Rath of length (n > 1) is defines as:

P(a0 ,an,A,R) = [P(aO,anil,A-an,R-rn) (rn.1 x rn) an

a0,an6l,an 6 A
A a0 # an-1 *an

A rn-lprn c- R

A rn.1 * rn

A an-l,an E rn

A an.1 E rn.1

A P(a0,an. ,A-an,R-rn)]

Where A is a set of n+1 attributes

and R is a set of n relations

The level of a path is defined by the relations used in traversal:

L(p,t) = [Lh(R,t) u l-R,t) I B a0 ,an,A (p = P(a0,an,A,R) A t 6 time]

Where
Lh(nil,t) U
Lh(R,t) Iq evel(rt) I r e R -., Level(rt) __ Lh(R-rt)]

Le/:,ii,t)= nil
L.(R,t) = [Compartment(r~t) u 1 (R-rt) I r e R]

Level(r,t) = Hierarchical security level associated with relation r at time t
Compartmert(r,t) = Non-hierarchical compartment associated with relation r at time t

R -- set of Alations

{U, C, S, TSý = Hierarchical security levels, and U < C < S < TS

I. This definition is taken from a working paper I 1 not yet submitted for publication
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Levels (because of comoartments) are only Dartially ordered.
The• rmlationshiW is defined as:

L(pl,t) < L(p2,t) e* 3 aiaj,akal,Al,A2,R1,R 2

[Pl = P(ai,aj,AI,Rl)
A P2 = P(ak,al,A 2,R2)

A Ih(Rl,t) < Lh(R2,t)
A Lc(RI,t) Q L(R 2,t)]

An illeal inference through secondary Dath analysis is defined as:
I(a0 ,an) = [TRUE 1 3 A,, A2, RI, R2 , Pl, p2, t

[P, = P(a0 ,an,Aj,Rj) A 12 = P(a0,anA 2 ,R2)
A L(plt) * L(p2,t)

A V r,r 2 [rlr 2lE (R1 r)R 2) Ar, =r 2

-+ L4(rl,t) = Lb(r2,t) A I(rl,t) =L(r2,t)]]]

Note:
1) The same relation can be used in both paths when proving inference

2) If the same relation exists in both paths, it must be assigned the
same security level in each for the purpose of determining inference;
i.e. because a table is multilevel in and of itself cannot be cited as
the cause of inference.

3) This definition was written for a multilevel environment with tuple
level labeling. Slight modification of the definition is required to
suit column level or element level granularity.
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SECTION 4

MLS DBMS ENGINEERING

The papers in this section of the report address issues and solutions for building database
management systems that enforce mandatory security. Ira Greenberg's paper "Should
Serializability be Enforced in Multilevel Datiabase Systems?" explores the goals of
concurrency control mechanisms and suggests new correctness criteria for multilevel
concurrency control algorithms. The evaluation of database management systems at high
levels of assurance using the Trusted Database Interpretation (TDI) does not appear to be
feasible in the near term; the paper by Irvine, Shell, and Thompson addresses this problem by
exploring the use of the Trusted Network Interpretation (TN1) as a basis for evaluation. The
paper describes the concepts of TCB subsets and balanced assurance and discusses how those
concepts relate to evaluations based on the TNI. In his paper "Evaluation by Parts of Trusted
Database Management Systems," Ravi Sandhu describes how some of the conservative
assumptions of the TDI might be relaxed based on specific DBMS and operating system
architectures. He concludes that additional research is needed to determine the specific
conditions where the architecture has an impact on the feasibility of evaluation by parts.
Dick O'Brien looks at the problems of correctly enforcing mandatory access controls with
respect to the data dictionary relations in a relational database. His paper "Metadata Issues in
a MLS DBMS" identifies several avenues of disclosure and denial of service in the
management of metadata and proposes some approaches to addressing them.
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Should Serializability be Enforced in
Multilevel Database Systems?

Ira B. Greenberg
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025

,Abstract

Security requirements in mutilevel database systems interact with concur-
rency control properties and algorithms. First, the multilevel database models
being studied are described. The known secure serializable algorithms are then
presented, and their drawbacks are discussed. It is then argued that the addi-
tional semantic knowledge available about integrity constraints in a multilevel
database makes it possible to devise nonserializable algorithms that preserve
correctness and exhibit improved behavior. A new correctness criteria called
multilevel correctness is then proposed, and it is used to examine the nonseri-
alizable concurrency control algorithm employed by Trusted Oracle.

1 Introduction

Concurrency control is a fundamental component of a database system. Its pur-
pose is to manage the concurrent execution of transactions, so that their operations
do not interfere and cause errors. A particular approach to concurrency control
will support certain properties about transaction execution and the correctness of
database states. For example, the standard correctness criteria for concurrency con-
trol is serializability, which guarantees that the concurrent execution of a collection
of transactions will have the same effect as some serial execution of the transactions.
A variety of algorithms can be used to implement the same property, although each
algorithm may have different performance characteristics and be more suited for
particular job mixes.

Concurrency control in a multilevel database system interacts with the security
model being enforced by the database system. We have been studying the effect
of a high assurance security model on concurrency control to determine what prop-
erties can be provided. In the security model we are considering, each subject is
single level, each transaction is single level, a subject can read only from dominated
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access classes, and a subject can write only at its access class. The subjects include
those that implement the database system. Mandatory security is enforced by the
operating system's trusted computing base (TCB).

Our work has shown that it is possible to support serializability for a multi-
level database system with the stated security model. However, the two known
serializable techniques both have drawbacks. The problem with the first algorithm,
which is based on optimistic concurrency control, is that the execution of low level
transactions can cause the execution of high level transactions to be delayed for an
arbitrary length of time. The problem with the second algorithm, which is based
on multiversion timestamp ordering, is that high level transactions can be forced to
read arbitrarily old data values as a result of the execution of low level transactions.

Serializability is typically selected as the correctness criteria for concurrency con-
trol because (1) it correctly provides the greatest amount of concurrency with the
transaction information that is available, (2) it is well understood, and (3) efficient
algorithms for serializable execution exist. In a multilevel database system, how-
ever, additional semantic knowledge is available, which makes it possible to employ
nonserializable concurrency control algorithms. In addition to providing better per-
formance, we believe that these nonserializable algorithms are less severely affected
by the security model we are studying. Consequently, we believe that maintaining
serializability in a multilevel database system is overkill, and that nonserializability
should be used.

This paper is organized as follows. The first section describes the abstract
database models we are using, and the second section describes the security model we
are trying to enforce. This is followed by a discussion of correctness criteria for the
execution of concurrent transactions, including serializability. We then outline the
two known serializable concurrency control algorithms for the models being studied.
The next section describes how the additional semantic knowledge in a multilevel
database system can be used to devise nonserializable algorithms. We then propose
a set of properties for nonserializable correctness control in a multilevel database
system. These properties are then used to examine the nonserializable concurrency
control algorithm implemented by the Trusted Oracle multilevel database system.
The paper concdudes with a summary.

2 Database Model

We will use the abstract architectural models for a database system de'cribed by
Bernstein et al. [11 as the basis for our discussion of database algorithms and prop-
erties. These models include the database, database operations, and the modules
comprising the database system that manages the database. In this section, we
will describe two models for a single-site database system. The first, the single ver-
sion model, stores only the latest veision of each data item, while the second, the
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multiversion model, stores several versions for each data item. This paper will be
presented in terms of the single-version model, except where noted.

2.1 Single-Version Database Model

A single-version database is a set of named data items, each with a value. The data
items will be represented by lower case letters, such as z and y. The values of the
data items at a given time form the database state.

A database system is a collection of software modules that manages the database.
It executes data operations on the database on behalf of users, and returns results to
the users. The database system is also responsible for performing common service
functions for the users, such as executing operations efficiently, maintaining the
integrity of the database when failures occur, and so forth.

The basic database operations axe the read function, which returns the value of
a data item, and the write function, which changes the value of a data item. The
data operations are executed atomically, which means that they appear to execute
sequentially and either execute in their entirety or not at all. If they actually execute
concurrently, that fact is not detectable outside the database system.

When database operations are executed, they are organized into larger opera-
tions called transactions. Each database operation must execute as part of some
transaction. Transactions, which we will denote by T1, T2, and so on, are consid-
ered to be the unit of database work. There are three transaction operations: start,
commit, and abort. The start operation indicates that a transaction has begun and
that the following database operations should be grouped together. A transaction
is ended by an abort or a commit operation. The abort operation indicates that a
transaction has failed for some reason, that its execution should be terminated, and
that any effects caused by its execution should be removed. The commit operation
indicates that a transaction has completed successfully, and that its results should
be permanently recorded.

The standard transaction properties are atomicity, serializability, and persis-
tence. Here, atomicity means that a transaction will either be executed in its en-
tirety, or not at all. Usually, it is not possible to access the partial results of a
transaction. Serializability guarantees that the interleaved execution of a collection
of transactions will have the same effect as some serial execution of the transac-
tions. Persistence means that the effects of a transaction will be permanent once
the transaction is completed and committed.

The abstract model of a centralized database system is shown in Figure 1, which
is taken from Bernstein et al. [1]. The model consists of four modules: the transac-
tion manager, scheduler, recovery manager, and cache manager. At a higher level
of abstraction, the recovery manager and cache manager can be viewed together as
a single module, the data manager, that directly accesses the database.
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Figure 1: Abstract model of a centralized database system

Users interact with the database through transactions, which are received and
managed by the transaction manager. Among other tasks, the transaction manager
passes the database and transaction operations in the transactions to the scheduler.
The scheduler is responsible for controlling the concurrent execution of transactions.
It accomplishes this task by specifying the order in which the operations axe exe-
cuted by the data manager. Its goals are to maintain the integrity of the database
by ensuring that transactions are executed serializably and recoverably, to permit
high performance by allowing a high degree of interleaving, and to maintain other
transaction properties.

The data manager is responsible for managing the database etorage, both on disk
and in memory. Read and write operations are sent from the scheduler to the data
manager. The recovery manager implements these operations in a reliable manner.
The cache manager controls the movement of data between memory and disk.
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2.2 Multiversion Database Model

In the standard database model, where there is only one version of each data item,
all transactions compete for the most recent values of the data items. By expanding
the database model to allow multiple versions for each data item, conflicts between
transactions can be reduced and performance can be improved.

A multiversion database maintains multiple versions of each data item and maps
the execution of transactions on data items to executions on particular versions of
the data items. Transaction operations are written so that they refer to data it'nms
without specifying a version. The concurrency control mechanism implemented by
the scheduler automatically translates these operations so that they execute on the
appropriate versions of the data items. A user is not expected to know that there
are multiple versions of data items, and is not allowed to explicitly reference any
versions.

The standard definition of serializability does not work for multiversion
databases because it does not account for the different versions of data items. The
analogous correctness criterion that was defined for multiversion databases is called
multiversion serializability. The interleaved execution of a collection of transactions
on a multiversion database is multiversion serializable if it is equivalent to some
serial execution of the transactions on a database with only single versions of the
data items. Once again, the executions are mapped back to a known situation,
and this execution will be correct because the serial execution of transactions on a
single-version database is correct.

3 Security Model

Various security models have been proposed for multilevel database systems. We
have selected an abstract model similar to the SeaView model [8, 21 because we
believe it affords the greatest security assurancE In this study, we are focusing
on mandatory security and are not considering discretionary security. Mandatory
security is the ability to control direct and indirect access to data according to
subject requesting access.

In this multilevel database system, the data items are the storage objects, and
they are each assigned an access class. The processes that act on behalf of users,
including the processes that make up the database system, are the subjects, and they
are each assigned an access class. Each access class may consist of a hierarchical
level, such as Secret or Confidential, and a set of nonhierarchical categories, such as
NATO or Nuclear.

The set of all possible access classes is structured as a lattice by a partial order-
ing relation called "dominates." One access class strictly dominates another if its
hierarchical level is greater than the other's hierarchical level and its categories are
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a superset of the other's categories, or if their hierarchical levels are the same and its
categories are a strict superset of the other's categories. An access class dominates
another if it strictly dominates it or if they are identical. If neither access class
dominates the other, they are called incomparable.

The following two rules are used to protect data items from unauthorized dis-
closure and contamination "when they are accessed by subjects.

"* Simple security property: A subject can read only data whose access class
is dominated by the subject's access class.

"* *-property: A subject can write only data whose access class equals the
subject's access class.

To use the database, a user must log in to the database system at one of the
access classes encompassed by the user's clearance. The user will access the database
through a subject whose access class will be set to the access class at which the user
logged in. The subject will access the database by sending a transaction to the
transaction manager. Each transaction will have a single access class equal to that
of the subject that issued it. The operations that comprise a transaction will in turn
be assigned the access class of the transaction.

Because subjects are single level, including the components of the database sys-
tem, the operating system must be able to instantiate a version of the database
system with the access class of any subject that needs to access the database. A
version of the database system may be composed of many subjects, all of which will
be single level and at the same access class.

We assume that the system is designed with a TCB subsets approach [11, 9]. In
this approach, an underlying mandatory security kernel is used to enforce mandatory
security for the entire system. Each access by a subject is intercepted by the TCB
and validated against the two access rules described above. The database system
executes above the TCB and relies on the TCB to enforce mandatory security.
The single-level subjects in the database system do not require new security proofs
because they cannot introduce any compromise to mandatory security.

Many of the properties provided by a database system, such as those related
to concurrency control and recovery, are global properties that are applied to all
transactions or data items. Supporting a global property for a multilevel database
without violating security requirements is impossible or difficult, depending on the
property, because all the database modules are implemented by single-level subjects.
The simple security property prevents all subjects except those at the highest access
class from seeing all of the data items. The *-property prevents a subject from acting
at all access classes except its own.

To implement a global property, subjects at multiple access classes must coop-
erate and coordinate their actions. By employing the same rules and assuming that
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subjects at other access classes will behave in a certain way, the collective effect
of their single-level algorithms can have the same effect as the desired global al-
gorithm. This is the strategy that will be followed for the properties that will be
examined. Sometimes it is impossible to implement a global property with a collec-
tion of single-level algorithms. At other times, the global property can be achieved,
but performance or other characteristics are adversely affected.

4 Correctness and Serializability

A database state is considered to be correct if a collection of integrity constraints
is satisfied for the contents of the database. Typically, each transaction is assumed
to be correctly written so that its execution will maintain the integrity constraints.
If this is true, then the execution of a single transaction will transform one correct
database state to another correct database state. By induction, the serial execution
of a collection of transactions will preserve the correctness of the database.

When transactions execute in parallel, their operations can be interleaved. These
interleaved operations can interfere and cause incorrect results. Forcing the trans-
actions to execute serially will result in correctness, but it will also lead to poor
performance. In general, to show that the database states produced by transactions
are correct, it is necessary to show that all of the constraints are satisfied for each
new state. This can be prohibitively expensive, and often many of the constraints
are not even known by the database system.

Concurrency control is implemented by the database system component called
the scheduler. The purpose of the scheduler is to manage the interleaving of trans-
action operations so that the correctness constraints are satisfied and a high level
of performance is achieved. The scheduler's input consists of a stream of requests
for the execution of the transaction operations. It can grant, delay, or abort each of
the requests. The scheduler's output for the transaction operations is an equivalent
schedule, which is to be executed by the data manager.

The correctness and performance of a scheduler's output depends on the in-
formation available to the scheduler about the transactions and the database. As "
discussed by Kung and Papadimitriou [6], the information used by a scheduler is
the minimum knowledge about the database and the transactions that the sched-
uler requires to function correctly. Information that would be useful .o the scheduler
includes syntactic information about the transactions, semantic information about
the meaning of the data and the operations performed, and information about the
integrity constraints that the data must satisfy.
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4.1 Serializability

The standard correctness criterion for the execution of concurrent transactions is
called serializability. The interleaved execution of a collection of transactions is
serializable if its result is equivalent to that of some serial execution of the transac-
tions. The execution of a serializable transaction history is guaradteed to be correct
because serial executions are correct.

Serializability has been studied extensively, and numerous efficient algorithms
are known. An important advantage of serializability is that it is relatively easy
to produce serializable histories. Rather than checking a transaction history after
it is generated, the scheduler can employ concurrency control algorithms that are
guaranteed to produce only serializable histories. This allows greater performance
than serial transaction execution, and is less expensive to accomplish than checking
correctness constraints.

Kung and Papadimitriou have shown that, when only syntactic information is
available to the scheduler, serializability provides the maximum amount of con-
currency [6]. This is often the case in real database systems, with semantic and
integrity constraint information either unavailable, difficult to specify, or difficult
to exploit. If additional information was available, however, it would be possible
to devise concurrency control algorithms that were correct and nonserializable, and
that gave better performance than serializable algorithms. We will discuss the use
of nonserializable correctness criteria in a multilevel database system in Sections 6
and 7.

4.2 Security and Serializability

In a multilevel database system, there is the additional problem of maintaining
correctness for concurrently executing transactions without violating security re-
quirements. The fact that all subjects must be single level precludes the existence
of a global scheduler. Instead, there is one single-level scheduler for each access
class. The goal for the group of schedulers is to collectively produce a serializable
global transaction history-that is, a history equivalent to some serial "transaction
history that could be produced by a hypothetical global scheduler. Each single-level
scheduler is assigned an access class by the TCB when it is created. Each schedules
only requests from transactions at its access class, but it must do so in a way that
coordinates with the actions of the other schedulers.

This approach cannot compromise mandatory security because the mandatory
security policy is enforced by an underlying TCB that is controlling accesses by
subjects to storage objects. However, it may be difficult to create correct schedules,
because all the schedulers must cooperate to produce a correct global schedule with-
out full communication. Because single-level schedulers cannot write down or read
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up, communication can only be one way, with a scheduler able to obtain information
only from dominated schedulers.

The use of multiple single-level schedulers is illustrated in Figure 2. If transac-
tions a and c are submitted by Unclassified subjects and transaction b is submitted
by a Classified subject, then the global input would be broken down as shown.
Each single-level scheduler would then produce a single-level output schedule for its
transactions; these single-level schedules would collectively form the global output
schedule. Note that the global input and output schedules are not explicitly formed
or represented in the system. They are the implicit sequence of transaction oper-
ations that would be seen by an omniscient observer. The order of operations in
the global output schedule is the order in which the operations were executed by
the single-level schedulers. The combined effect of the single-level schedules will be
serializable if the global output schedule is equivalent ýo some serial execution of
the three transactions.

Unclassified
aiLcia2C2 Output Schedule

Unclassified 6. cl 6C2
Multilevel Scheduler (granted requests)

Input Schedule
al cibib2a2c2b3  | Chsified
(arriving requests) Classified Output Schedule

(granted requests)

Figure 2: Schedule generation by multiple single-level schedulers

5 Secure Serializable Concurrency Control

Algorithms

Only a few secure serializable concurrency control algorithms have been developed
for a multilevel database system based on the database and security models we have
been studying. These algorithms use two basic approaches for realizing serializabil-
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ity. The first approach is to delay the execution of a transaction until it does not
conflict with transactions at lower levels. The second approach is to execute a trans-
action using old versions of lower-level data items so that it will not conflict with
transactions at lower levels. In both cases, a transaction is responsible for avoiding
or recovering from conflicts with lower-level transactions.

In this section, we will briefly review examples of these approaches, and dis-
cuss their drawbacks. The-first algorithm is called modified optimistic concurrency
control [4, 3], and is designed for single-version databases. It is based on Kung
and Robinson's optimistic concurrency control approach (7], and works by delay-
ing the execution of transactions when necessary. The second algorithm is called
MVTO-SS [4, 10], and is designed for multiversion databases. It is based on the mul-
tiversion timestamp ordering (MVTO) approach [1], and works by allowing trans-
actions to use old data values when necessary.

5.1 Modified Optimistic Concurrency Control

Unlike other approaches, which prevent conflicts from occurring, optimistic con-
currency control allows a transaction to complete execution and then validates the
transaction result when the transaction is ready to commit. If the transaction has
conflicted with another transaction and has used potentially inconsistent data, it is
rolled back and restarted. This method is called "optimistic" because its efficiency
relies on a low conflict rate and infrequent rollbacks.

For optimistic concurrency control, transactions are required to consist of three
phases: a read phase, a validation phase, and a (possibly empty) write phase. Dur-
ing the read phase, a transaction obtains private copies of all relevant data, and
makes all updates on these private copies. The validation phase certifies that the
transaction does not conflict with transactions that previously committed or are
currently committing. If the transaction is validated, the private copies are made
public during the write phase.

Modified optimistic concurrency control is based on optimistic concurrency con-
trol with serial validation as described by Kung and Robinson [7]. In the new
algorithm, a standard version of optimistic concurrency control is run among the
transactions of a given access class to prevent conflicts between the transactions at
that access class.

A modified version of optimistic concurrency control is used to synchronize trans-
actions from different access classes. The enforcement of mandatory security by the
TCB makes it impossible for a transaction's result to depend on information writ-
ten by a higher-level transaction. Therefore, a transaction must be validated only
against transactions from domiaated access classes. Consequently, a single-level
scheduler can always read the information it needs to validate a transaction exe-
cuted at the scheduler's access class, and the database system can always securely
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roll back every transaction that needs to be rolled back. A small amount of infor-
mation must be logged for each transaction so that the single-level schedulers can
coordinate their actions. Additional details can be found in [4, 3].

5.2 Modified Multiversion Concurrency Control

The basic MVTO algorithm [1] maintains multiple versions of data items to reduce
conflicts. The types of conflicts that can still occur are resolved by immediately
aborting the transaction that causes the conflict. MVTO cannot be used for a
multilevel database system because mandatory security will prevent certain aborts
from occurring, thereby leading to incorrect results. We will now describe the basic
MVTO algorithm and outline the modifications necessary to create a secure version
of the algorithm.

The basic MVTO algorithm works as follows. A transaction is assigned a unique
timestamp when it begins executing, and this timestamp is associated with all read
and write operations in the transaction. Essentially, each transaction executes in-
stantaneously at a unique virtual time. Each data item can have many versions,
and each version has a read timestamp and a write timestamp associated with it.
When a data item is written, a new version of the data item is created, and its
write timestamp is set to the timestamp of the write operation. When a data item
is read, the database system reads the version of the data item with the most recent
write timestamnp earlier than the timestamp of the read operation. That version's
read timestamp is then set to the more recent of its current value and the read
operation's timestamp. A write will be rejected, and the transaction that issued it
will be aborted, if the write will invalidate the result previously returned by a read.
More precisely, a write will be rejected if its timestamp falls between the write and
read timestamp for a version of the data item being written. Note that writes from
different transactions cannot conflict because the writes have different timestamps.

MVTO would provide serializable concurrency control for a multilevel database
system if it were possible to a priori guarantee that a transaction would never
invalidate a read executed by a transaction from a higher access class. Keefe and
Tsai [5] used this insight to develop a modified version of the MVTO algorithm that
would provide secure serializable concurrency control. However, their algorithm
required a trusted subject to perform scheduling, which is not permitted by our
security model. MVTO-SS was created by modifying Keefe and Tsai's algorithm to
remove the need for a trusted subject. (SS stands for single-level scheduler.)

The basic idea behind the secure versions of MVTO is that it will sometimes
be necessary to assign a new transaction an execution timestamp that is earlier
than the current timestamp. This effectively moves the new transaction into the
past with respect to all active transactions and some committed values at strictly
dominated access classes. To be more precise, when a transaction begins, it is
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assigned a timestamp that precedes the timestamps of all transactions active at
strictly dominated access classes and that follows the timestamps of all transactions
at its own access class. This approach to timestamp assignment is the factor that
makes it impossible for a transaction to invalidate a read from a higher access class.

MVTO-SS must coordinate the actions of the single-level schedulers so that
they cooperate to produce a multiversion serializable schedule. The problem is
to correctly assign timestamps to the transactions so that they will execute in the
proper order in the global execution history. A labeling scheme is defined that allows
the single-level schedulers to independently assign the transactions unique virtual
timestamps. In addition, an algorithm is described that allows each single-level
scheduler to determine the proper virtual timestamp based on auxiliary information
stored at strictly dominated access classes. Additional details can be found in [4, 10].

5.3 Drawbacks

Two techniques have been shown for providing secure, serializable concurrency con-
trol, but each has a serious drawback. A modified version of optimistic concurrency
control will work, but the execution of transactions that read from strictly domi-
nated access classes can be indefinitely delayed. This performance problem, which
is an example of denial of service, is especially significant because the highest-level
access classes contain the most sensitive activity and information.

For a multiversion database, a modified version of MVTO, MVTO-SS, could be
used, but it has the drawback that transactions can be forced to read arbitrarily
old data values from dominated access classes to avoid conflicting with transactions
at strictly dominated access classes. Here, the problem is that the quality of the
result degrades as the transactions are required to read progressively older data.
Once again, it is the work at the highest access classes that will be most seriously
affected.

These problems appear to be fundamental consequences of secure serializable
concurrency control when the security model requires single-level subjects, and not
just deficiencies of the particular algorithms that were described. In the remainder
of the paper we examine the benefits of using nonserializable concurrency control
techniques.

6 Using Semantic Knowledge to Improve on
Serializability

As discussed in Section 4, serializability is only one approach for ensuring correct
concurrent execution; the real goal is to ensure that the database integrity con-
straints are not violated. Based on the work by Kung and Papadimitriou, greater
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concurrency than is possible with serializability can be achieved only if some se-
mantic knowledge is available about the transaction operations, the database, or
the integrity constraints. In the context of a multilevel database, this extra knowl-
edge may also make it possible to achieve correct execution without the kinds of
performance and quality drawbacks discussed above.

An examination of the security model we have selected reveals that many kinds
of integrity constraints cannot exist between data items from different access classes.
We believe that this additional semantic knowledge about integrity constraints can
be exploited to develop better concurrency control techniques for the selected class
of multilevel database systems.

Some integrity constraints relate the values of two or more data items. In-
tegrity constraints called invariants require the relationship to always hold. Invari-
ants across access classes cannot exist for the selected security model because they
cannot be enforced. For example, two data items at different access classes cannot
be changed simultaneously (atomically) by a transaction because transactions are
single level and can write at only one access class. Also, a transaction changing the
value of a data item cannot validate the new value against a data item at a higher or
incomparable access class because of the simple security property. Invariants across
access classes may be desirable, but they are prohibited by the use of mandatory
security and single-level subjects.

A transaction can appear to establish consistency among data items at its access
class and data items at strictly dominated access classes, but this is an illusion. The
consistency can he broken immediately by a transaction that changes one of the
data items at one of the lower access classes. The best that can be done is to have
some process at the high access class frequently probe the lower-level data items
and reestablish consistency as soon as possible. Not only is this expensive, but the
constraint will often be violated anyway.

Another kind of integrity constraint, called an ordering constraint, occurs when
a value depends on the fact that some event has occurred, In a database, this
dependency is formed when another value, which represents the event, is read from
the database. Ordering constraints can exist between data items at different access
classes, and must be maintained by the concurrency control mechanism.

Enforcing serializability for the selected type of multilevel database appears to
be overkill because it requires establishing global transaction execution orders to
preserve nonevi-qtent invariant integrity constraints. While serializable execution is
not wrong, it appears to have a high cost in terms of performance or quality of
result. We consider the quality of the result to be degraded when transactions are
forced to base their results on excessively old versions of data items, ignoring newer
values for those items.
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7 Nonserializable Correctness

The limitations on integrity constraints make it possible to consider less restrictive
correctness properties than those imposed by serializability. An important point
about these properties, which should lead to better implementations, is that invari-
ants need to be maintained among transactions only if they are at a single access
class. Note that while global serializability is not provided, the contents of the
database are still correct because all existing integrity constraints will be satisfied.

The multilevel concurrency control correctness criterion of multilevel correctness
is defined to consist of the following properties.

" Single-level serializability. Arbitrary integrity constraints can exist among
the data items at an access class. Because only syntactic information is avail-
able within an access class, serializability will have to be used as the correctness
criterion for the execution of the transactions at the access class. Any standard
serializable concurrency control technique can be used.

"* Single-level read consistency. Data items within an access class may be
related by integrity constraints. When a transaction reads two or more data
items related by integrity constraints from a dominated access class, the data
items must be read from a consistent collection of values.

"* Progress. Once a particular version of a data item has been read by a process,
any process dependent on the execution of the first process should not read
an earlier version of the data item.

The difference between multilevel correctness and serializability is that the value
of a data item read from a strictly dominated access class need not be the most
recent version of the data item at the time when the transaction performing the
read commits. As long as consistent groups of related data items are read, they
may be from older versions.

Progress is not strictly a database consistency property. It represents the often
unstated assumption that actions or computations move forward in time. In many
situations, it is assumed that an action will be able to observe in the current state
the effects of previous actions, and should act accordingly with respect to those
effects.

In the multilevel database system that has been described, the transactions for
each access class are serialized into a sequence. Although invariants are not defined
across access classes, transactions do interact and form dependencies across the
access classes by the order in which they read and write data items. The purpose
of progress is to maintain these computational dependencies.

The values of the set of data items at an access class form an access class state.
The execution of the transactions at an access class will cause the access class to
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move through a series of states. Each state will depend on one or more states
from strictly dominated access classes where reads occurred. We will call these the
dependent states. When a transaction is executed on an access class state, progress
will be satisfied if the concurrency control version function does not select a data
item version from a state older than the dependent states. As with serializability, it
is desirable to have a simple method for guaranteeing progress, rather than requiring
dependencies to be computed and examined.

Another property that is desirable but not -ecessary is recency. If a transaction
can read any of several versions of a data item, it should try to read the most recent
version. Presumably this approach will produce the best results because they will
be based on the most up-to-date information.

Multilevel correctness is just one way to define correctness for a multilevel
database system. Serializability is another valid definition, but it appears to be
too constraining. Multilevel correctness is designed to provide a collection of cor-
rectness properties that are appropriate for the semantics of a multilevel database
system and a group of common processing assumptions. The goal is to allow the
performance and the quality of results to be improved by using a weaker correct-
ness criterion that is less restrictive than serializability. Multilevel correctness will
provide all of the properties of serializability except the requirement that the values
a transaction has read when it commits belong to the most recent versions of the
data items. Other correctness criteria can be used that provide a different group of
guarantees and may be appropriate for a different group of processing assumptions.

8 Trusted Oracle Concurrency Control

The concurrency control algorithm employed by Trusted Oracle can be used for
the multiversion database model and the security model we have selected. Unlike
the other known algorithms for these models, the Trusted Oracle algorithm is not
multiversion serializable [4]. In this section, we describe the algorithm and examine
it with respect to multilevel correctness.

8.1 The Trusted Oracle Concurrency Control Algorithm

The concurrency control algorithm used in Trusted Oracle is a hybrid multiversion
algorithm that uses strict two-phase locking (2PL) and MVTO. It is an extension of
the concurrency control algorithm used for the single-level Oracle dtabase, which
also uses strict 2PL and MVTO. The algorithm works as follows.

Each data item is assigned an access class, and multiple ver-ions are maintained
for each data item. Each version of a data item has a timestamp associated with it.
A new version of a data item is created for each transactic. that writes to the data
item. A new version is permanently entered in the database when the transaction
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that creates it successfully commits, and the timestamp assigned to the new version
is the time when the commit occurs. Each commit is guaranteed to occur at a
unique time.

Transactions are identified as queries or updaters. Queries are guaranteed to
execute only reads. while updaters may also execute writes. When a transaction
starts, it is assigned an access class and a read point equal to the time when it
began.

Queries are executed using the MVTO algorithm. The query's read point is
associated with each of the read operations executed by the query. Each read of
a data item is mapped to the most recently committed version of that data item
whose timestamp is earlier than the query's read point. Queries can read any data
item whose access class is dominated by the query's access class.

Updaters consist of read and write operations. An updater can read any data
item whose access class is dominated by the updater's access class, but it can write
only data items whose access class equals its access class. Strict 2PL is used for read
and write operations on data items at the updater's access class. These reads and
writes are mapped to the latest version of a data item, which may be an uncommitted
version created by the updater that is executing the operation. MVTO is used for
reads on strictly dominated data items, and an updater's read point is associated
with each of these reads. These reads are mapped to the most recently committed
version of a data item whose timestamp is earlier than the updater's read point.

Note that a read being executed under MVTO cannot be invalidated by a write
from another transaction, because the timestamp associated with the new version
of a data item is not assigned until the updater that created it successfully commits.
This means that uncommitted versions existing when the read starts will have to
receive timestamps greater than the read's read point, and any new updater will
have to start after the read's read point.

8.2 Trusted Oracle Concurrency Control and Multilevel
Correctness

The Trusted Oracle concurrency control algorithm supports the multilevel correct-
ness properties of single-level serializability and single-level read consistency. The
algorithm also mostly satisfies the property of recency. There is at least one way in
which progress can be violated, however.

Single-level serializability is efficiently achieved for each access class by the single-
level scheduler at that access class using strict 2PL. Each scheduler can perform
this task independently without interacting with schedulers at other access classes.
Single-level read consistency is enforced for strictly dominated access classes with
MVTO. A transaction does not have to worry about the values it reads from strictly
dominated access classes becoming invalidated or inconsistent because no transac-
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tion from a strictly dominated access class can write a data item version earlier than
the original transaction's read point.

A transaction always reads the most recent committed version of a data item.
For data items at its access class, the version read is the one that exists when the
data item is locked. For data items at strictly dominated access classes, the version
read is the last committed version before thi transaction's read point. In addition,
selecting these versions to be read mostly satisfies recency because they represent
the last committed versions that exist before the transaction starts. Numerous
intermediate versions could be skipped with this approach. Various modifications
may allow slightly more recent versions to be selected, but it is not clear that much
would be gained.

While progress is generally supported by Trusted Oracle, there is at least one
unusual execution pattern that would cause it to be violated. This situation is de-
picted in Figure 3. The problem is caused by the order in which two CONFIDENTIAL
transactions T 2 and T 3 write versions of y that depend on versions of the UNCLAS-

SIFIED data item z. T3 begins first and establishes a read line that causes it to read
the first version of z. UNCLASSIFIED transaction T, then creates a new version of z.
T2 now starts and its read line causes it to read the new version of z. T2 commits
before T3 and writes a new version of y. T3 now locks y and when it commits writes
a new version of y based on the first version of z. Progress is violated because the
version of y written by T 2 depends on a newer version of z than the value of y
written by T 3.

This problem occurs because there is a write by T, between the two reads.
Normally, with locking, T3 would have taken out a read lock on z which would
have prevented T, from being able to write. Because this lock cannot be set in a
multilevel database, T, cannot be blocked. Various modifications could be used to
avoid this problem.

Trusted Oracle provides a weaker correctness criterion than multilevel correct-
ness. While it does not guarantee the property of progress, it does appear to provide
greater concurrency than algorithms for multilevel correctness. The correctness cri-
teria supported by Trusted Oracle, single-level serializability and single-level read
consistency, can be argued to be appropriate for a wide variety of applications.

9 Summary

Almost all database systems use serializability as the definition of correctness for
concurrency control. Partially, this occurs because it is the best that can be accom-
plished without additional semantic knowledge about the database, its operations,
or its integrity constraints. Other reasons for using serializability are that it is easy
to understand, thoroughly studied, and widely known, and efficient algorithms exist
for its implementation.
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Figure 3: Counterexample for progress in Trusted Oracle

It has been shown that concurrency control interacts with security requirements
in a high assurance multilevel database system where each subject is single level.
Several secure serializable concurrency control algorithms have been developed for
this type of database system, but each exhibits serious drawbacks. When they
are based on delaying the execution of a transaction until it does not conflict with
strictly dominated transactions, algorithms suffer from performance and denial of
service problems. When they are based on forcing a transaction to read old versions
of data items so the transaction cannot conflict with strictly dominated transactions,
algorithms suffer from low-quality results. These problems for serializable algorithms
are a natural consequence of enforcing mandatory security and using single-level
subjects, and not just a deficiency of the algorithms that have been developed.

In addition to its effects on serializability, the selected security model also pre-
vents invariant integrity constraints from being enforced across access classes. The
semantic knowledge that these invariants cannot exist can be used to develop non-
serializable concurrency control algorithms. Because the integrity constraints for
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the database are guaranteed to not include invariants, the new semantic knowledge
does not have to be explicitly specified to or searched for by the database system.
The serializable algorithms incur performance or quality problems in an effort to
preserve nonexistent invariants. We believe that nonserializable algorithms will be
able to perform better by exploiting the new knowledge.

A new nonserializable correctness criteria called multilevel correctness is pro-
posed for concurrency control in multilevel databases. It provides the properties of
single-level serializability, single-level read consistency, and progress. The benefits
of adding the property of recency are also discussed. Multilevel correctness can be
used as the basis for new secure concurrency control algorithms.

Multilevel correctness is then used to examine the nonserializable concurrency
control algorithm used by Trusted Oracle. This is the only nonserializable algorithm
known for the multilevel database models being studied, and it appears to have good
performance characteristics compared to the secure serializable algorithms. We
conclude that this concurrency control algorithm observes single-level serializability
and single-level read consistency, and performs well with respect to recency, but
that there are situations where progress is not enforced.

The Trusted Oracle concurrency control algorithm demonstrates the potential
of nonserializable concurrency control algorithms in multilevel database systems.
Except in some unusual situations, it implements the properties of multilevel cor-
rectness, and it is easy to implement and understand. We believe it is possible to
modify the algorithm so that it will also support progress. Further study is needed
to develop multilevel correct algorithms, to compare the behavior and performance
of secure nonserializable and serializable concurrency control algorithms, and to
understand the properties of secure nonserializable concurrency control algorithms.
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Abstract

High assurance multilevel database management systems offer attractive solutions to a variety of
operational data management problems. There is a need to field viable database management
systems soon. The monolithic evaluations dictated by the Trusted Database Interpretation will
prohibit their emergence through that avenue in the immediate future. Class Al trusted network
systems are currently feasible which can achieve the realization of high assurance database solutions.

The Trusted Network Interpretation allows various components which are separately evaluated to be
used as the building blocks of a complete system. In this paper a hypothetical database component
will be discussed in the context of systems at the highes: levels of assurance. The features of this
component will be described and its advantages presented. Among the latter are the elimination from
the DBMS of a need for trusted path support, identification and authentication, and labeling of
human readable output.

An embedded database management system being developed at Gemini will be used as an example of
a possible database component.

1 Introduction

The Trusted Network Interpretation (TNI) of the Trusted Computer System Evaluation Criteria
(TCSEC) [1] provides interpretations of the TCSEC [2] appropriate for evaluating a network system
as a single system with a single Network Trusted Computing Base (NTCB) that is physically and
logically partitioned among components of the network. The Trusted Database Management
System Interpretation (TDI) of the TCSEC [3] provides interpretations appropriate for evaluating
database management systems against the requirements of the TCSEC. Neither the TDI nor the
TNI provide explicit guidance for the evaluation of network systems containing databases. While
not specifically excluding such systems neither interpretation provides explicit guidance for
evaluating database systems that are partitioned into components of a network. In particular, the
TNI does not address the evaluation of components that contain TCB subsets and the use of a
subset evaluation for components. This paper outlines an approach toward evaluation of such
systems that is consistent with the techniques and requirments of both interpretations.

As an example, consider a network component to which has been allocated a discretionary access
control policy. A requirement of the TNI is that the network component meet the TCSEC DAC
requirement. Assuming the network component is a database management system, the TDI
provides an interpretation useful for evaluating compliance with the DAC requirement for database
management systems. Once established, (and the other requirements of Appendix A of TNI are
met) the component may be treated as a "D-Component" of the TNI, and composed, in accordance
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with Appendix A of TNI, with other network components such that an overall network security
policy is enforced.

This paper describes the network secunry architecture of the "Embedded Secure DBMS"
(ESDBMS), a network component that is a composition of two distinct components: 1) a "DBMS
component" that includes the ORACLE Relational DBMS; and 2) an M-component, the Gemini
Trusted Network Processor (GTNP),that incorporates the GEmini Multiprocessor Secure Operating
System (GEMSOS) [4] Mandatory Security Kernel [5]. The ESDBMS component, which is
designed to meet Class Al requirements for MDA-Components as defined in the TNI, provides
multilevel secure database management. In addition to a Class Al M-component enforcing a
Mandatory Access Control (MAC) policy, the ESDBMS includes enforcement of a Discretionary
Access Control (DAC) policy and auditing. Other components provide direct user connections,
i.e., user identific.-tion and authentication. These other network components may be mainframe
host computers that each run at a single security level.

Section 2 of this paper presents a statement of the problem that the ESDBMS is intended to solve
and identifies product features of the ESDBMS and describes its intended use in terms of candidate
system applications. Concepts found in the TDI and TNI which provide the basis for the
evaluatability of the system encompassing the ESDBMS are presented in Section 3. Section 4
presents a formulation of the ESDBMS architecture within the context of the TNI, and describes
how the TNI is a useful tool for solving this class of problems. Section 4.1 reviews the TNI support
for the composition of separately rated components into an evaluatable network system, and section
4.2 introduces a network architecture that includes 'distinct network components, including a DBMS
component. Section 4.3 then proposes an implementation of the DE2MS component as a virtual
machine that executes on the GTNP. The architectural properties of the DBMS component
necessary to support composition with the GTNP M-Component are presented in section 4.4,
followed by a discussion of how the TDI may be used to evaluate the DBMS component against
TCSEC requirements in section 4.5. Section 4.6 then presents the result of composing the DBMS
component with the GTNP, namely the ESDBMS component, in terms of its network security
architecture. Section 4.7 identifies some future enhancements to the ESDBMS. Finally, section 5
presents the conclusions.

2. ESDBMS Features and Candidate Applications

Command, Control, and Communication (C 3) computer systems manage large volunmes of diverse
operational data in support of human, automated, or semi-automated decision making, while serving
an operational need for rapid access to timely information. To date, the automation of many C§
functions has been hampered by several factors: the need to protect information at a variety of
classification levels from unauthorized modification or disclosure; the need to ensure that critical
transactions based on "up to date" data are performed in a time-critical manner; and the need to
develop customized systems meeting the requirements of specific installations.

The ESDBMS is designed to serve as a DBMS "backend" database engine providing rapid access to
shared information at various classifications and time-critical transaction processing while enforcing
a security policy for the access of users to information with a high degree of assurance. Intended to
serve as a Class Al MDA-Component as defined in Appendix A of the TNI, the ESDBMS is a
synergistic combination of the GEMSOS Mandatory Security Kernel, packaged within the GTNP,
and the ORACLE Relational DBMS. When combined with suitable Class C2+ host front ends, the
ESDBMS results in a complete Class Al system. The ORACLE RDBMS [6] was particularly
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suited to the architectural approach of the ESDBMS because it is read lock-free and allows
arbitrary transaction suspension. Other database approaches [7] were possible, but only ORACLE
provided a range of capabilities required by potential users. By utilizing a general-purpose
commercial DBMS already supporting utilities, applications and accepted standards (e.g., ANSI
SQL), the ESDBMS has the potential to provide a highly versatile and functional base for C3

operations with high assurance security.

The ESDBMS is intended to be available on the compatible family of commercial off-the-shelf
GTNP products, which have performance capacities ranging from 0.5 MIPS to 25 MIPS. In
addition, the GTNP product family includes a variety of storage and interface devices, including
Ethernet, HDLC, IBM High Speed Channels, and up to sixty-four RS-232 serial ports.

A major problem that a general DBMS tailored for C3 applications must solve is that of enforcing,
with a high degree of assurance, mandatory and discretionary security policies for the observation
and modification of data. The ESDBMS is intended to support system operational concepts such as
those requiring operators with different security clearances and "need-to-know" permissions. The
tools for the design of data and its manipulation offered by a commercial DBMS should also be
tailored to recognize the potential existence of data of different sensitivities in order to realize the
maximum cost leverage possible in the face of escalating application software development and
maintenance costs.

The class of application the ESDBMS is intended to serve can be characterized as being required to
meet a rigid time-critical schedule (e.g., guaranteed end-to-end response time) for certain high-
priority predefined transactions that are executed in response to events external to the system. The
end-to-end processing time must be predictably met under "worst case" conditions of system load.
In contrast with the ESDBMS design, DBMSs hosted on multi-user, general-purpose operating
systems generally cannot offer time-critical service because the underlying operating system does
not offer the ability to dedicate resources to high-priority transactions as they execute. Thus
without products such as the ESDBMS, the range of C3 applications that can be contemplated is
limited to those where the operational benefit justifies the development of application-specific time-
critical data management routines as part of the procurement. In such systems, conventional
DBMS packages are typically only usable to support non-critical, transaction processing [6, 8].

The architectural approach of the ESDBMS requires transaction suspension and concurrent
execution of transactions at differing access classes. The read and rollback strategy of the Trusted
ORACLE RDBMS allows concurrency in a multilevel environment. Each process obtains its own
consistent copy, or snapshot, of whatever portion of the database it is currently accessing. To read
a particular tuple, "undo" data is used to "restore" the database to the state it was in when the
process started the transaction. Thus, for a given process, the database appears unchanged as of
the start of the transaction. Within a particular ongoing transaction, writing to the database affects
only the process local snapshot.

ORACLE provides a version number for each transaction which identifies the state of the
tuple at the time the transaction was initiated. This allows the read and rollback strategy to
be effective and allows each transaction to complete [9].

Potential applications of the ESDBMS include command and control information systems such as
that designed to serve SACLANT [10]. The SACLANT system requires a multilevel secure
database containing, among other things, platform tracking information. In this system priorities
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are associated with each query, and high priority transactions have rigid response time requirements
that are independent of the system's load of lessor priority queries.

C3 systems often include a requirement for the enforcement of a mandatory integrity policy [111,
allowing mission-critical data to be modified only by operators and application programs that are
trusted to make such modifications properly. As an example of the utility of a mandatory integrity
policy for C3 applications, consider thd usual objection to the notion of supporting "user-written"
applications accessing C3 data, that there is no assurance that such applications, if erroneous and
being executed by a subject at a high security level, will not destroy or degrade the data upon which
critical system transactions depend. If a mandatory integrity policy is enforceable, "damage
control" boundaries can be erected around critical data such that no user program, however
erroneous it may be, will be allowed to modify the data. Similar protections against damage can be
offered for the programs delivered with the system.

Another example of the need for mandatory integrity policy enforcement can be found in systems
with multiple modes of operation. An example is that designed for SACLANT that are intended
for use in training exercises as well as for operational purposes. Use of mandatory integrity would
allow operational data to be observed but not modified as a result of exercise and training activity.

A further class of potential applications of the ESDBMS are general data services environment in
which mainframe computers execute at different security levels. In such an environment, the
ESDBMS would allow sharing of information between the single level mainframes; giving users a
"single system view" of information at differing security levels. An example of such a system is that
being installed as part of the Headquarters System Replacement Program (HSRP) [12]. If these
capabilities are combined with an appropriate interface such as Multilevel SQL (MSQL), which is
being developed for the SeaView implementation prototype [13], a high utility system will result.

3 Conceptual Foundations for the ESDBMS

The problem of achieving high assurance multilevel database capabilities has been recognized since
the "Summer Study" that occured in 1982 [14]. It appeared that the design multilevel database
systems would result in architectures in which significant portions of the database were trusted, with
the concomitant result that such systems would unlikely to be evaluatable at the highest levels of
assurance. Major advances in high assurance database technology resulted from the SeaView Class
Al Relational DBMS project [15, 16]. Generalization of the standard data model to a multilevel
environment combined with an architecture which allowed the database to execute outside the
perimeter of a mandatory security kernel while providing adequate functionality demonstrated the
promise of evaluatable high assurance database managment systems. The evaluatability of such
systems is grounded in the notions of TCB subsets and balanced assurance. This section will
provide an overview of these concepts.

3.1 TCB Subsets

The concept of TCB subsets was formally defined as a method for decomposing a TCB into
components which could be separately evaluated and then combined into a complete TCB [17]. An
abbreviated definition of TCB subsets is provided in the TDI. It is possible to establish that the
ESDBMS architecture satisfies the conditions for TCB subsetting by meeting the following criteria
for a coherent subset architecture. These criteria are outlined here and will be described more fully
in later sections within this paper.

110



"• identification of candidate TCB subsets
"* "allocation" of system policy to the candidate TCB subsets
"* explicit description of the TCB subset structure, or architecture
"* substantiation of the assertion that the TCB subsets occupy distinct "subset domains"

The historical context for the ESDBMS is found in classical Hinke-Schaefer architectures [18] for
multilevel database systems: DBMS executes as an untrusted application on top of a high assurance
TCB. In the ESDBMS, a high assurance mandatory TCB supports the execution of a trusted
DBMS.

Although it does not comprise a complete TCB, the ESDBMS can be viewed as containing two
candidate TCB subsets: a mandatory subset, and an audit and DBMS DAC subset. The policy
allocation to the subsets will be such that the mandatory technical policy will be enforced by the
mandatory component, while the audit and database discretionary policies are enforced by the non-
mandatory TCB subset. The architecture is such that the subset enforcing the mandatory access
control policy will be more privileged that the non-mandatory TCB subset. Finally it will be
demonstrated that the mandatory TCB subset creates the notion of distinct domains for each less
privileged subset and that the domains are hierarchical such that each subset is non-bypassable,
maintains disjoint objects, and is self protecting.

3.2 Balanced Assurance for Near term Solutions

The notion of balanced assurance was introduced with SeaView [19, 20] and provides a
methodology for achieving a high level (Class Al) of assurance for a system as a whole by applying
high assurance techniques to the part of the system enforcing the mandatory access control policy
while requiring assurance measures equivalent to C2 for those parts of the TCB enforcing the non-
mandatory access control policy. In contrast, uniform assurance, requires the assurance measures
of the target evaluation class to be applied to each TCB subset (or, in a collapsed TCB, to a
monolithic TCB).

The application of balanced assurance is based on the strict allocation of policy to TCB subsets for
which it can be demonstrated that the TCB subsets occupy distinct protection domains. Each TCB
subset will enforce a clearly expressed policy on its subjects. In addition, since they are in distinct
protection domains, hierarchically ordered (i.e., more privileged) TCB subsets are absolutely
tamperproof with respect to less privileged TCB subsets and hierarchically unrelated TCB subsets
are absolutely unrelated to each other. (The latter can be characterized as similar to the isolation
provided by a Virtual Machine Monitor for the Virtual Machines it creates.) By meeting these
subsetting requirements, it is possible to state that the non-mandatory TCB is constrained by the
subset enforcing mandatory security policy and is unable to compromise mandatory security.

The TCB subset enforcing mandatory access control policy and any TCB sets it relies on must be
subjected to a uniform level of assurance requirements, which will be level of the target evaluation
class. Thus, any TCB subsets enforcing the system', mandatory access control policy must satisfy
the full gamut of assurance requirements of the target evaluation class. It can be argued that to
apply high assurance techniques to the non-mandatory TCB subsets in no way increases the
assurance that the mandatory access control policy is correctly enforced. An explicit characteristic
of a manadatory access control policy is that the nature of the information it is intended to protect
is such that its disclosure will result in a compromise to security for which the penalties are severe.
In contrast, the penalties meeted out for infractions of discretionary access control policies are less
harsh. Therefore, one can posit that the policy which must be enforced with the highest degree of
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assurance must be the mandatory policy, while the discretionary policy enforcement mechanism may
be subjected to a less stringent group of assurance requirements. Hence, TCB subsets enforcing
any non-mandatory access control policies have a benefit of a relaxation of the requirements for
applicable assurance techniques. For example, the Class C2+ assurance requirements of the TNI
require non-mandatory TCB subsets to meet the target evaluation class requirements for
functionality, but assurance requirements for Class C2.

The TDI does not define the basis for evaluations to be conducted using balanced assurance:
database systems must be evaluated monolithically. Two important factors contribute toward the
infeasibility of high assurance evaluations of data base management systems at this time. The first
is the state of the art for verification for which certain concerns remain.

The second relates to serious fundamental issues of computability of the correspondance to a model.
A feature of sophisticated database systems is that they support the enforcement of content-
dependent DAC policies, for example, through view-based access control. The content dependance
of such policies make them, by their very nature, dynamic. One could consider the situation similar
to one in which one has an arbitrary program and an arbitrary specification. In the case of
completely general view-based access control, there is an arbitrary policy and an arbitrary
mechanism. It is not clear that it is possible to provide correspondence to a formal model as
evaluation evidence a priori. There are substantial parallels between the problem of database DAC
policies and that examined by Harrison, Ruzzo and Ullman [21] regarding the undecidability of the
safety of a system where discretionary access controls are used to determine access to objects.
They proved that the safety problem could be reduced to the halting problem. Database DAC
policies face similar problems of non-computability.

It is unlikely that major commercial vendors will be willing to commit corporate resources to a high
assurance evaluation at a time when the outcome of the evaluation is in doubt due to current status
of formal methods as well as problems on non-computability intrinsic to database systems. This
means that although they will be evaluated at lower levels of assurance, it is unlikely that a
commercially viable DBMS, such as the ORACLE RDBMS, will be evaluated at Class B3 or Al
under the TDI. The notion of balanced assurance is encompassed (although not explicitly by name)
in the TNI, which presents an attractive alternative for achieving a high assurance evalution.

4 The TNI is a Vehicle for a Solution

This section describes bow the TNI can be used to evaluate the ESDBMS.

The TNI provides interpretations of the TCSEC appropriate for evaluating a network system as a
single system with a single NTCB that is physically and logically partitioned among components of
the network. In Appendix A of the TNI, this view is extended to one in which a network system is
partitioned into components; each component is rated to determine its security relevant
characteristics; and then the composition of the components is evaluated to arrive at an overall
rating class for the network. As noted in section A.1 of the TNI:

This approach aids in the assigning of an overall network evaluation class in two ways: 1) it allows
for the evaluation of components which in and of themselves do not support all policies required by
the TCSEC (which will then contribute to the overall evaluation of any network which uses the
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evaluated component), and 2) it allows for the reuse of the evaluated component in different networks
without the need for a reevaluation of the component.

This TNI approach is one in which an individual component's NTCB "partition" (viz., that
component's hardware, software and firmware responsible for enforcing the particular subset of the
overall network security policy allocated to that component) is evaluated against TCSEC
requirements applicable to those polices enforced by that component.

Thus, once a set of components are evaluated against their applicable TCSEC requirements, the
TNI provides the tools necessary to compose the components into an evaluatable system that
enforces a complete network security policy. The TNI is not prescriptive with respect to the
manner in which components are evaluated against TCSEC requirements. We assert that the TDI
"provides an appropriate interpretation for evaluating a DBMS component against the TCSEC
requirements applicable to that component as defined by the TNI for DA-Components. Use of the
TDI for evaluation of the DBMS component is described in section 4.5

4.1 TNI Composition Rules

Appendix A of the TNI provides guidance for evaluation of the individual components of a trusted
network and defines a set of rules for the composition of evaluated components to form an
evaluatable (sub)system and the method for assigning a rating to a (sub)system conforming to the
rules. For example, section A.2.9.1 of that Appendix describes the composition of a Class Al M-
Component (a component that enforces a mandatory access control policy), and a Class C2+ D-
Component (a component that enforces a discretionary access control policy having the functionality
required of Class B3 systems and the assurance required for Class C2 systems). This composition
results in a Class Al MD-Component (a component that enforces both mandatory and discretionary
access control polices.)

4.2 Network Architecture Overview

This section presents a network architecture that includes DBMS components. Figure 1 illustrates
the architecture in terms of the network components and their allocated functions and policies.
Note that Figure 1 illustrates the logical architecture, not necessarily the physical architecture. In it
a set of Class C2+ DBMS components having different security levels are connected through a
GTNP designed to meet the Class Al requirements for a M-Component of the TNI. The GTNP
also provides connections for the DBMS components to a set of Class C2+ host computer systems
having directly connected users.

In Figure 1, each Class C2+ component has a single security level, and is connected to the GTNP
through interface connections at that single security level. The DBMS components enforce DAC
and audit policies over the databases based on IDs associated with specific communication channels,
and the DBMS components perform audit. The host components authenticate users; perform
audit; and enforce a DAC policy that includes discretionary authorizations of subjects to attach to
the channels that connect to the DBMS components via the GTNP M-Component.
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The specific network security architectwe of the DBMS is further described in section 4.4, however
first a specific class of network components, "virtual machines" are discussed and the DBMS
component is shown to be such a component.
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Figure 1

Composition of a Gemini Trusted Network processor M-Component with Class C2+ DA-
Components in a MDA-Component designed to meet Class Al requirements

4.3 Virtual Machines as Network Components

As described in the Introduction to the TNI, a virtual machine is an example of a network
component. In the architecture illustrated in Figure 1, the DBMS components execute as virtual
machines created by the Class Al M-Component. To include explicit support for multi-state virtual
machines, the GTNP provides mechanisms allowing a comprehensive ring integrity policy to be
implemented [22,23]. Each virtual machine executes at a single, distinct access class and sharing
between virtual machines is mediated and controlled by the M-component such that the state of one
machine does not affect the GTNP's access mediation with respect to other machines. Within
each of these virtual machines, the GTNP provides the support required to create hierarchically
ordered privilege domains such that more privileged domains are absolutely tamperproof with
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respect to those that are less privileged. It is a property of the GTNP's network security
architecture and design (as described in the TNI Introduction) that virtua' machines constructed
with this ring mechanism are intended to be evaluatable as distinct network components.

TSDBMS S DBMS
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Subject Subject

(SQL, etc.) (SQL, etc.)

C2+ TCB
Boundary built

with GTNP -
ring mechanism C2+ C2+

NTCB NTCB M-Component
Partition Partition Virtual Machine
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M-Component
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"Hosts

Figure 2

The GTNP supports virtual machines as distinct network components.
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Each DBMS component virtual machine is implemented as a process on the GTNP. Outside the
GEMSOS Mandatory Security Kernel, each process has multiple dominance domains, where the
domain containing the DBMS component's NTCB partition is more privileged than that containing
the DBMS component's non-TCB subjects.

The GTNP provides a single level interface to network components implemented as virtual
machines on the GTNP. In Figure 1 these single level interfaces between the M-Component and
the DBMS components are represented by communication channels labeled "A" through "F". The
virtual machine interface presented by the GTNP M-Component is composed of primitive
operations (i.e., non-privileged machine instructions and GEMSOS Kernel functions) that may be
used to construct an inter-component protocol for use by components when communicating via the
GTNP. This protocol will utilize shared segments and synchronization primitives (viz., eventcounts
and sequencers [24].)

Figure 2 illustrates the DBMS components executing as virtual machines on the GTNP M-
Component. Composing the GTNP M-Component and the DBMS DA-Components results in the
ESDBMS MDA-Component. To perform this composition in accordance with the TNI, the DBMS
component must first be shown to be consistent with a specific network security architecture. This
is discussed in the following section.

4.4 Network Security Architecture: DBMS Composition Requirements

This section identifies necessary architectural features of the DBMS DA-Component such that it
may be composed with the GTNP M-component in accordance with the system architecture
considerations described in Appendix A of the TNI.

The DBMS DA-Component network security architecture reflects a correct use of the M-
Component's ring mechanism to implement dominance domains [22], thus providing the DA-
component with a domain for its execution and protecting the component's NTCB partition. The
DBMS DA-Component NTCB partition uses M-Component resources to present an abstraction of
subjects and objects at its interface. Examination of the resources presented by the M-component
interfaces and their utilization by the DBMS-component demonstrates that the subjects and objects
exported by the latter are based exclusively on the resources and functional support provided by the
former. The DA-component is designed to provide the association of an identifier, used for DAC
enforcement, with the subjects attached to the various communication channels connecting the
DBMS to the host computers. Finally, its audit capabilities include audit records based on error
messages returned to it by the M-Component (e.g., due to attempts to violate the MAC policy.)

The characteristics of the DBMS DA-component described above are sufficient to allow that
component to meet the composition requirements of the TNI as described in its Appendix A.
These are in addition to those required to meet the DAC and Audit requirements of the TCSEC.

4.5 Evaluatabillty of the DBMS as a TDI-TCB Subset

It is necessary to establish that the DBMS, in this case the ORACLE RDBMS, which provides the
network DA-component, is designed to meet both the DAC and Audit requirements of the TCSEC.
The TDI explicitely introduced the notion of TCB subsets so that database evaluations could be
conducted incrementally through an evaluation by parts. Thus a DBMS evaluation could be
achieved through two separate evaluations: that of an underlying operating system which satisfies

116



the criteria for a TCB subset enforcing mandatory security policy, and then of the DBMS as a less
primitive subset utilizing the subjects, objects, and functional interface presented by the more
primitive subset. (Readers should be careful to note the use of the word "primitive" in the TDI in
contrast to earlier discussions [17] of TCB subsets which used the more standard notion of
"privilege.")

The ORACLE RDBMS [6] is designed to meet the criteria for a TCB subset and is evaluatable as
such under the TDI. The principle characteristics of the ORACLE RDBMS that make it especially
appropriate for the ESDBMS are its "distributed architecture," which permits TCB subsetting; the
absence of "read locks;" its capability for arbitrary transaction suspension; its Class C2+ DAC
meeting the requirements of the TCSEC; its well-defined programmably isolated interface; and its
C3 capabilities. This evaluation will be sufficient to demonstrate that the DBMS meets the DAC
and Audit requirements of the TCSEC.

4.6 Network Security Architecture of the ESDBMS

Once the DBMS component's network security architecture is shown to have the architectural
characteristics identified in section 4.4, the GTNP and a set of DBMS components may be
composed into a Class Al MDA-Component. This section describes the network security
architecture of the ESDBMS, viz., its security functions and interfaces to other network
cmponents.

The security functions of the ESDBMS are the enforcement of mandatory and discretionary access
control policies and the performance of audit.

All mandatory access control policy within the ESDBMS is provided by the GTNP, thus its MAC
policy is described completely by the GTNP. The mandatory security kernel of the Gemini Trusted
Network Processor supports the enforcement of policies regarding the unauthorized disclosure of
information (secrecy) and the unauthorized contamination of information (integrity). The
mandatory security mechanism is based on controlling the access of subjects with a given sensitivity
level to protected information having a specific access class label. The GEMSOS access labels may
be used to create sixteen hierarchical secrecy protection levels and sixteen hierarchical integrity
protection levels. Two category divisions are available to augment the two types of protection
levels: one division of 64 secrecy categories and a second group of 32 integrity categories. These
levels and categories form a partially ordered set. Label-based policies that may be represented by
a sublattice of the complete lattice may be implemented.

The DBMS enforces discretionary policies such as access to relations, authorization to read,
update, or modify database entities, etc. The DBMS enforces constraints on the data. These
include integrity control mechanisms for referential integrity, recovery, concurrency support, and
transaction control.

Additionally, the ESDBMS DA-component performs audit. These audit operations can be divided
into two categories: those stored in a system-high audit trail which record operations which are
external to the database, such as requests to create a database; and those stored by the ORACLE
RDBMS in an instance-level audit trail which will record operations which are internal to the
database. The ORACLE audit trail cin provide a fine grained record of access to tables or views
and the use of different types of SQL operations.
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The principle component interface presented by the ESDBMS is a set of single level channels, each
of which is dedicated to a specific subject ID as determined by a security administrator to represent
users, groups of users, or both. These single level channels are intended to connect to single level
host computers.

The IDs associated with each single level channel are administratively mapped to whatever
authorizations are used to control access to the channels on the connected host computers (the
connections labeled A' through F' in Figure 1.)

5 Potential Future ESDBMS Enhancements

The ESDBMS as discussed to this point is that which is being developed as part of a Phase 11 SBIR
contract through Rome Air Development Center. It has been dubbed the "primitive option"
because it provides only the functionality necessary to support basic multilevel secure, embedded
database features. A number of more advanced features have been identified.

5.1 Multilevel Device Interface

As described above, the ESDBMS does not support multilevel channels as defined in the TNI.
Thus each host with directly connected users must interface to the ESDBMS through single level
channels. This limitation is inherent when the connected hosts are single level. However, if one
introduced multilevel hosts to which users could negotiate sessions of different security levels, the
single level channels could become limiting. The ESDBMS could be extended to support multilevel
channels for use in communicating with multilevel hosts. The GTNP's ring mechanism can be used
to introduce additional virtual machines that implement multilevel channels. In this specific
extension, a ring would be defined that is a more privileged domain than that to which the C2+
DBMS NTCB partition is allocated. This ring would contain the implementation of a multilevel
subject that presents the multilevel channel abstraction, as suggested by the Rational of section
4.1.1.3.2.1, "Exportation to Multilevel Devices" of the TNI.

A multilevel service can be tailored to meet the specific needs of the ESDBMS. This will be a
"channel receive" process able to allow connections to be made to the ESDBMS from remote
systems. By recognizing the access class of the connecting system, the channel receive process must
be able to activate a single level subject within the ESDBMS which will process the requested
transaction. It is intended that the channel receive process establish the priority of the requested
transaction such that high priority transactions are guaranteed a response time based on "worst
case" analysis.

As an adjunct to this enhancement, the system could be adapted to provide for dynamic DBMS
instance creation, thus yielding a solution to the "Gzillion Problem" [25]. This problem is
encountered in systems intended to support a potentially very large number of access classes. To
provide for each possible access class statically would consume system resources that might never be
used by an actual transaction. The solution is twofold: data structures are designed so that per
access class information is created and locatable algorithmically, and a multilevel subject is provided
that is able to create single level instances of the data base at any of the possible access classes.
The primary features of the Trusted ORACLE RDBMS that would require modification to support
dynamic instantiation of the database at new access classes have been identified.
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Methods for view expansion will support subjects occurring at previously unencountered access
classes such that these subjects are provided with valid views in the allowable range of readable
access classes.

5.2 Adaptive Priority Scheduler

Currently, when the process with the highest priority obtains the processor, it executes until it
relinquishes the processor voluntarily or as a result of preemption by a higher priority process
becoming ready to run. Some environments may require the modification of this paradigm. An
adaptive priority scheduler could be included so that within a particular priority level, all
transactions are given an equal time share. An adaptive scheduler could permit time slicing at
lower priorities while maintaining the preemptive nature of the higher priority transactions.

5.3 High Granularity Discretionary Access Controls

Each interface (viz., single level channel) to the ESDBMS is dedicated to a single ID (either a user
ID, group ID, or both) for purposes of discretionary access control. It is required that this ID be
administratively mapped to the discretionary authorizations associated with the device interfaces on
the single level hosts. A future enhancement to the ESDBMS would be to extend the C2+ DBMS
NTCB partition on the ESDBMS to dynamically associate IDs with information read and written
from the channels. This enhancement would require that the connected hosts incorporate a similar
protocol for associating information with users.

The ESDBMS enforces a discretionary access control policy as provided by the Oracle RDBMS.
This DAC is implemented to a Class C2+ level of assurance as defined in the TCSEC in
combination with the TNI. A possible extension to the ESDBMS is to introduce an additional
virtual machine that enforces a DAC policy on named objects that are used by the DBMS to
implement the database itself.

4 Conclusion

For the foreseeable future, it is infeasible to produce a high assurance database management system
in which the database "engine" itself is trusted at the higher levels of assurance. In addition to
issues of state of the art for verification, there are serious fundamental issues of computibility of the
correspondence to a model, even at Class B2. As a consequence, near term evaluations of
monolithic trusted database management systems under the auspices of the TDI must be restricted
to low assurance systems.

The principle objective of the ESDBMS design is to provide an overall architecture that allows the
processing of high-priority, application-specific, preprogrammed DBMS transactions with a
guaranteed worst-case end-to-end processing time in a high assurance multilevel secure context.
This paper has outlined an approach to achieving an evaluatable high assurance DBMS in the near
term by using an architecture based on TNi network components, some of which are DBMS
components. This is possible because the TNI provides a set of objective metrics by of separately
evaluated components having differing assurance classes can be combined into network architecture
components and evaluated as a high-assurance trusted network.
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1 INTRODUCTION

A database management system (DBMS) is a superb tool for building effective infor-
mation systems. The widespread use of DBMS's across the board, from stand-alone
personal computers at one end to heterogeneous networked mainframes at the other,
is ample testimony to the success and acceptance of this technology. It is therefore
no surprise that there is significant interest in trusted DBMS's on the part of users,
vendors and evaluators.

The vast majority of DBMS's are hosted on top of some general-purpose Operating
System (OS). The open systems thrust which is driving the industry will increasingly
lead to situations where the DBMS, OS and possibly hardware are supplied by dif-
ferent vendors. This presents a significant challenge to vendors and evaluators in the
development and rating of products.

Over the past few years, the security community has spent considerable effort
in examining how the evaluation of a trusted DBMS can be factored out and sepa-
rated from the evaluation of the underlying trusted OS. This effort has culminated
in the recently published Trusted Database Interpretation (TDI) [1] of the Trusted
Computer Security Evaluation Criteria (popularly known as the Orange Book) [2].

The authors of the TDI have consciously taken a generic (i.e., non-DBMS specific)
and conservative approach to the question -,f evaluation by parts. This is perhaps ap-
propriate in the first cut at this problem. However, an abstract and generic treatment
leads to worst-case scenarios and pessimistic conclusions.

The authors of the TDI have also taken the approach that the Orange Book is
a fixed parameter in this exercise. There has been no debate on whether or not the
Orange Book could be strengthened or augmented in some way, so as to facilitate
evaluation of parts.

In this note we propose some ideas on how the pessimistic conclusions of the TDI
can be relaxed. We also speculate on some ways in which the Orange Book might
be augmented to make evaluation by parts easier. There are no definite conclusions
reached in this n te. Our objective is to point out some avenues for fruitful research
in the theory and practise of evaluation by parts.
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2 EVALUATION BY PARTS

The writers of the TDI have d -'berately chosen to take an abstract and (mostly) non-
DBMS specific approach to the generic question of evaluation by parts. For instance
the TDI states quite explicitly that:

"The approach taken in this document is to address the issues of eval-
uating systems built of parts in a way that is independent of the field of
trusted database management. This conscious attitude of generality is
intended to make clear the distinction between the larger system-of-parts
issues and the more specific DBMS issues."

While there are many merits to this approach, the general abstract setting inevitably
leads to very conservative and cautious conclusions regarding the efficacy of evaluation
by parts.

In particular the following pessimistic conclusion has dismayed many vendors,
evaluators and researchers.*

"This case also concerns a TCB that consists of two candidate TCB
subsets, C and D. C is the more primitive subset. That is, D uses the
abstractions provided by C .... Additionally, D is trusted with respect to

C. That is, some of the C-subjects which make up TCB subset D execute
as trusted processes of C. . . .This case can be viewed as a special cuse of a

pA.neviously evaluated TCB which has been altered. ... Although this case
may appear, intuitively, to be different from that of arbitrary alteration
of a previously evaluated TCB, the example demonstrates that such an
approach makes it impossible to perform an evaluation by parts."

In this case the TDI is clearly treating the addition of a trusted process as an "arbi-
trary alteration of a previously evaluated TCB." Hence the "impossibility" of evalu-
ation by parts.

The reality of system building and software engineering is, however, very different
from this hypothetical worst case scenario. Trusted subjects %re used to do very
specific tasks and require very specific exemptions from the security policy of the
underlying TCB.

"This conclusion was cast in different words in drafts leading to the eventual publication of the
TDI as follows: "Thus, a TCB that contains an unconstrained TCB subset will be subject to the full
gamut of penetration testing and covert channel analysis appropriate to the target evaluation class
for the entire TCB, including any previously or separately evaluated TCB subsets. In the case of
TCB subsets less primitive than an unconstrained TCB subset, only local evaluation activities can
be done separately." Operationally, the net effect of the revised statement is essentially the same as
this earlier formulation.
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It is very important for the security community to examine the extent to which
the conservative conclusions of the TDI can be relaxed in the light of specific trusted
DBMS and trusted OS architectures? We are motivated by the following intuition:
the extent to which the underlying trusted OS needs reevaluation should correlate
with the degree of match between DBMS and OS architectures. We must go beyond
the generic abstract perspective of the TDI to consideration of:

* concrete and realistic trusted DBMS and OS architectures, and

* allocation of overall security policy to individual DBMS and OS TCB subsets.

It is our conjecture that:

"* the extent to which the underlying trusted OS needs reevaluation should corre-
late with the degree of match between DBMS needs and OS services, and

"* the extent to which the underlying trusted OS needs reevaluation should corre-
late with the allocation of the overall security policy to individual DBMS and
OS TCB subsets.

3 EXAMPLES

It is worth considering some examples to illustrate why the DBMS architecture and
OS architecture are both relevant to this question.

1. Our first example shows the relevance of the OS architecture, specifically con-
cerning the granularity of privilege that can be assigned to a trusted subject.
At one extreme let OS-A provide only a binary privilege (such as super-user)
for this purpose so that granting the privilege removes all constraints from the
trusted subject, i.e., OS data structures are completely exposed to trusted sub-
jects. At the other extreme let OS-B have extremely fine grained privileges
to the extent that exemption from the *-property can be granted with respect
to individual files. It is intuitively obvious that an unconstrained TCB subset
built on top of OS-A should require a greater degree of global penetration test-
ing than one built on top of OS-B with one very specific exemption from the
*-property.

2. Next consider the relevance of the DBMS architecture. At one extreme consider
DBMS-A which runs as a single trusted subject with respect to the OS. By
definition such a DBMS has the ability to leak its highest sensitivity information
to its lowest clearance subjects at essentially instantaneous speed. At the other
extreme let DBMS-B run as a collection of untrusted processes, one at each
sensitivity level, except for a single trusted process which is used to synchronize
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the two-phase commit of transactions. It intuitively appears that DBMS-A
should require greater degree of global covert-channel analysis than DBMS-B.

3. Finally consider the relevance of the combination of DBMS and OS architec-
tures. Our intuition suggests that the 4 combinations resulting from coupling
the 2 OS's and 2 DBMS's outlined above can be ranked as follows in decreasing
order of global analysis required.

(a) DBMS-A, OS-A

(b) DBMS-B, OS-A

(c) DBMS-A, OS-B

(d) DBMS-B, OS-B

One would expect an order of magnitude difference in effort required at the two
extreme ends of this scale.

The challenge is to make a systematic analysis of various architectures to give a sound
foundation for the intuitive ideas discussed above.

The compatibility of DBMS and OS architectures is strongly influenced by allo-
cation of the overall security policy to individual TCB subsets (i.e., the DBMS and
OS subsets). In reality the DBMS subset is itself likely to be factored into more
than one TCB subset.t The allocation of policy to the individual TCB subsets is
then a critical factor in determining the overall efficacy of evaluation by parts. The
conservative conclusions of the TDI are important and significant because they do
not depend upon specific assumptions in this regard. But then they are also overly
conservative with respect to particular policy allocations.

4 OS REQUIREMENTS

The TDI is of course an interpretation of the Orange Book. It therefore takes the
Orange Book as a given. The Orange Book on the other hand was not written with
the concept of evaluation of parts in mind. Therefore the Orange Book does not
evaluate the features of an OS which make it easy or hard to build trusted subject
DBMS's on top. As our examples above show the privilege features of an OS are
extremely relevant. We therefore need additional criteria so as to be able to make
the following statement: It will be easier to incrementally evaluate trusted subject
DBMS's built on top of OS A in comparison to those built on top of OS B. This is
a difficult problem but one that must be confronted if products are actually going to
be built and used.

tThis is true of practically all DBMS architectures proposed in the literature.
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5 SUMMARY

We have outlined some ideas for the critical and systematic analysis of evaluation
requirements imposed by the coupling of various trusted DBMS and trusted OS ar-
chitectures. The objective is to go beyond the conservative conclusions of the TDI
by departing from its generic abstract perspective to consideration of

* concrete and realistic DBMS and OS architectures,

as well as

* specific assumptions regarding the allocation of the overall security policy to
individual DBMS and OS TCB subsets.

We have also argued that the security community needs criteria to determine which
OS architectures are more amenable to incremental evaluation of trusted-subject ap-
plications.
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A relational DBMS usually includes two tables used to maintain the metadata, the Relation and
Attribute tables. Users can perform queries on these relations just like any other relation in the
database. Modification of the metadata is done by special operations such as Create Relation,
Modify Relation, and Destroy Relation. These special operations insure that both the Relation and
Attribute tables are modified consistently.

In a multilevel RDBMS there are a number of security issues that must be addressed when managing
and designing the metadata. In this paper some of these issues are presented and discussed.

Destroying Relations

To simplify the discussion in this section, it is assumed that all of the metadata for a given relation
must be defined at the same level. It may be possible that different relations are defined at different
levels, but it is assumed that no relations are polyinstantiated. Whether or not polyinstantiation
of tuples or elements is allowed in the relation is not important to the discussion in this section.
So for simplicity, we assume no polyinstantiated data.

Since a relation may have tuples in it at numerous levels, the issue arises as to the manner in
which a relation can be destroyed securely. If a user at the level at which the relation metadata is
declared has the ability to destroy the relation, then higher level tuples in the relation will either
be destroyed in the process or left as orphans. In either case, the potential exists for a low level
user to make higher level data unavailable to high level users. While no high level data is disclosed
by such an action, this does allow a denial of service attack.

Possible alternatives to allowing arbitrary users to delete relations would be to disallow the destruc-
tion of a relation that contained tuples at a higher level, to automatically redefine the metadata
for the relation at a higher level, or to administratively control the manner in which relations are
destroyed.

Disallowing the destruction of a relation if it contains any tuples at a higher level leads to a well-
known covert channel in which a high level subject can signal information to a low level user by
entering or removing data from the relation. If the relation is destroyed, then the low level user
knows that there was no high level data in it. This approach may or may not be acceptable
depending on the ease with which users (or user's subjects) can create and destroy relations. At
any rate, the channel could easily be audited and the bandwidth controlled.

Automatically redefining the metadata at a higher level is a potentially complicated solution that
is probably not feasible. In cases where there is data at higher levels which are incomparable with

127



one another, the metadata would have to be redefined at each of these incomparable levels. This
would lead to polyinstantiated relations and the resulting complications that they would imply.

The administrative approach seems the most feasible and could be handled in at least two ways.
The simplest technique would be to have a database administrator who was cleared to database
high. This administrator would have the responsibility of destroying relations and, when doing so,
of ensuring that no higher level data is lost that should not be lost. A second technique, which would
involve more functionality in the DBMS, would be to use a locking mechanism to keep relations
from being destroyed if they had any higher level tuples in them. Before a user inserts tuples into
a relation at a higher level, the metadata must first be locked by a user at the lower level. Before
locked metadata can be manipulated at the lower level, the individual making the changes must
notify individuals at thc higher level of the changes and receive acknowledgment that the change
is acceptable. Certainly individuals at the lower level can infer that there may be higher level data
using this approach, but that is all they can infer. This may seem like a complex administrative
procedure, but in fact when a relation is defined it can be locked immediately if it is known that
the higher level users will be inserting data into it.

Classifying Metadata

There are several classification issues that must be addressed when deciding how metadata is to
be handled in a NILS DBMS. Throughout the discussion, the emphasis will be on approaches that
avoid polyinstantiation of metadata.

o The existence of relations may be classified.

In certain applications it may be desirable to hide the existence of a higher level relation
from lower levels. This would involve entering and maintaining the metadata for the relation
at the higher level. As with ordinary data this leads to a pctcntial covert channel. The
channel occurs when a lower level user attempts to define a relation that already exists
at the higher level. If the lower level user is notified of the conflict, a channel is created.
This covert channel in metadata manipulation may be acceptable depending on how the
database is used. If modifying the metadata occurs infrequently, or is only performed by
a database administrator who is cleared to database high, the bandwidth of the channel is
low, or non-existent. If database processes are allowed to create their own shared relations.
however, name conflicts across levels might occur. To avoid polyinstantiating the relations,
an appropriate solution might be to require that relations defined at different levels be named
in such a manner as to identify the level at which they are defined. For example, TSShips
and UNC-Ships. There need not, of course, be any relationship between tuples in the two
relations since the relations might represent totally different real world entities.

9 The existence of attributes may be classified.

In certain applications it may be desirable to hide the existence of an attribute in a relation
at lower levels. A name constraint could be placed on the attribute to require that all values
for that attribute be stored at the higher level. For example, such a constraint might be: the
destination of all ships must be classified Secret or above. However, using this approach, the
existence of the "destination" attribute is still known at the lower level. If the existence of
the attribute must be classified, then some other approach must be used.
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The most straightforward approach is to require that all metadata that describes a relation be
stored at a single level and then construct views that contain relations at different levels. A
relation is not visible below the level of its metadata, nor are there attributes associated with
the relation at higher levels. Instead attributes whose existence is classified are simulated
by creating a new relation at the higher level that has the same key as the original relation
and includes the classified attribute. A database view can then be defined at the higher level
that joins the original relation with the higher level relation. This database view becomes
the relation for the higher level.

The advantage of this approach is that the existence of attributes and relations can be hidden
while keeping the metadata simple. The complete relation can be seen as the join of the
lower level relation with the higher level relation. Since this view is defined as needed, a
problem does not arise when incomparable levels have attributes with the same name. For
levels dominating both the incomparable levels, the view can be defined using the desired
combination of attributes. Since views and relations share the same name space, however,
the view must have a different name.

For example, if the unclassified Ship relation is extended at the secret level with the attribute
"-Weapon", then the metadata might be;

Relation (U)
Relation Name Arity ...

Ship 4 ..

Relation (S)
Relation Name Arity

Arms 2

Attribute (U)

Attribute Name Relation Name
Ship Name Ship

Class Ship
Weight Ship

Crew Number Ship

Attribute (S)
Attribute Name Relation Name

Ship Name Arms
Weapon Arms

View (S)
View Name View Definition

ArmedShip Ship 0shtpName Arms

There are disadvantages to this approach. Updating the classified attribute becomes more
difficult because it is maintained in a separate relation. It must either be maintained in the
separate relation or the ability to update simple views of this type must be provided by the
DBMS.

If polyinstantiated tuples are allowed in the relations, then other problems also arise. With
this view definition, tuples that are polyinstantiated in the relation Ship would also be polyin-
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stantiated in the view ArmedShip. It would, however, be possible to define the view to only
include tuples in the Ship relation that are at secret.

In general, there are large number of possible views that might be defined. If R1 is the lower
level (U) relation and R 2 the higher level (S), then there are three possible ways to define
a view at the higher level; R1 o4 R2 , Rl(restrictedtoU) D4 R2 and Rl(restrictedtoS) D< R2 .
Adding a third attribute at a third level in a relation R3 creates even more possibilities. This
is similar to what happens with polyinstantiated data elements in a tuple and could lead to
some of the same confusion that arises in element level polyinstantiation [1]. However, since
the views are defined by a human, the inconsistency can be resolved in the view the human
creates. This places more burden on the schema designer, but the benefit is that the view
can be defined exactly as desired for each level. Views provide the semantic link that ties
together the relations at different levels into one relation.

In fact this approach does not require that views be defined. Users could create their own
view, or construct queries that make the appropriate joins. While this approach is simple
to implement, the DBMS cannot enforce that the views are defined in a consistent manner.
Thus ambiguities might arise, especially when polyinstantiation (either tuples or elements) is
allowed, unless great care is taken by the individuals defining the views.

Other approaches that might be used to solve the problem of classifying thv2 existence of
attributes are discussed in [2].

The existence of classification constraints may be classified.

Classification constraints, by their very nature, are difficult to hide. If a constraint requires
values to be inserted at a higher level, the user entering the tuple can infer the existence
of the constraint when values entered disappear, or the update is denied. In addition, if a
classification constraint is classified, then a trusted mechanism is necessary to enforce the
constraint at lower levels since only a subject at or above the level of the constraint would
know of its existence. Thus, classifying constraints at a level higher than the level of the
metadata that describes the relation is probably of limited value and may result in more
complication to the DBMS than is warranted.

The Value of Constraints

The question arises as to whether content constraints have sufficient practical value to warrant
their inclusion in a MLS DBMS.

Two possible uses that have been identified are:

" To provide a convenient way for a user to enter a tuple that contains multilevel data without
having to enter portions of the tuple at each appropriate level. This is probably not an
appropriate use of classification constraints since it encourages users to enter higher level
data at a lower level, and if the entire database is not trusted, the potential exists that a low
level Trojan horse could intercept the higher level data before it is upgraded.

" To provide an automatic upgrade facility for raw data that is being entered into the database
for the first time. Such data may have been generated by sensors or other automatic data
gathering devices and the classification of the data may depend on its value. In these instances
it might be appropriate to have constraints do the upgrading automatically.
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I would be interested in. hearing of other possible scenarios in which content constraints might be
of value.

Summary

Handling metadata in an MLS DBMS presents additional challenges to the designer of such a
system. This paper has described some of these concerns and has discussed some of the possible
solutions that might be chosen.
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SECTION 5

APPLICATIONS DESIGN

The papers in this section address issues relating to the design of multilevel database
applications that enforce appropriate application security policies. In " ference' Free
Multilevel Databases," T.Y. Lin analyzes the security properties of relational operations
when combining data classified at different security levels. He applies techniques for
classifying aggregations to show that these techniques also eliminate inferences derived from
the use of relational algebra. In her paper "Handling Security Constraints During Multilevel
Database Design," Bhavani M. Thuraisinghan provides an algorithm for relational
decomposition based on association constraints, where attributes are clustered into uniformly
classified groups. Thuraisingham, Ford, and Collins outline an integrated approach to
security constraint processing in their paper "A Note on Security Constraint Processing in a
Multilevel Secure Database Management System." They propose addressing security
constraints at three distinct points in time: during database design, on each database update,
and during query processing. In her paper "The Multipolicy MoJel: a Working Paper,"
Hilary H. Hosmer addresses the problem of integrating different, possibly conflicting,
policies into a coherent security policy for a complex system. She describes the current
paradigms, pointing out the inherent problems, and proposes a set of goals and mechanisms
for a more flexible approach.
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1. INTRODUCTION

Inference is usually defined as a logical process of proving or
deriving some conclusions from some given facts and rules
[Morg87,881. However, in the database security community, the term
is used in a more technical sense, namely, the process of drawing
a sensitive conclusion from joining (a relational operator) several
less sensitive relations [Hink89], (Lunt89]. In this paper we will
use the "inference" in this narrow sense.

Let E, F, G and H be relations and

E = F * G * H.

If E is strictly more sensitive than F, G and H, then there is an
"inference". In general, suppose there is a relational algebraic
equation

E = f(F, G, H,...)

where E, F, G , H and ... are relations. Further, if E is
strictly more sensitive than each F, G, H and ... , then we say
there is an "inference". Intutively, it means we can draw a piece
of senstive information E from less sensitive relations F, G, H ...
and algebraic expression f. Intuitively speaking, the "inference"
exists because the relation.E is improperly classified.

Formaly, a database is "inference" free if

[E] =< l.u.b {[F],[G],[H],..}

is true for any relational expression E = f(F, G, H,...).

The central question then is:

Can we properly classify the data in a database so that such
"inference" does not exit ?

There is an easy solution. If the data of a database are all

135



classified Top Secret, then such "inference" can not exist. (For
such situations, even the more general inference does not exist).

Obviously, such a security policy is not acceptable to almost any
organization. Recall that a security map is the assignment of each
object or subject to a security classification (or clearance). So
the central problem is:

What is the "minimal" constraints on the security map so that the
database will be "inference free"?

In this paper, we have pleasant results: We show that thert is no
"inference" in lattice model and aggregated security algbera.
Lattice modelis an aggregated security algebra when there is no
aggregation problem in databases.

2. MULTILEVEL RELATIONAL DATABASES

From a structural point of view, a database is a collection D of
structured data. In fact a database is a collection of data
generated by relational operators. From a functional point of view,
a database is a repository of information. A piece of information
is a sub-collection (a view) of primitive data. Algebraically it is
a "homogneous polynomial" of primitive data. We will use the set of
all views, the set of information, the power set P(D), and the set
of all homogeneous polynomial interchangeably.

2.1 Database without Aggregation

Intrinsically, a database can be viewed as a relational algebra
generated by primitive data via relational operators [Lin89]. We
will illustrate it by examples.

Example 2.1. Given the following relation E, we will represent it

algebraically via relational operators.

E = US-TROOPS

cityname Cl #-troops CL Tupleclass .....

Rome S 755 S S
Athens S 345 S S
London C 231 C C
Berlin S 500 S S
Paris S 500 S S
TOTAL U 2331 U U

This relation can be expressed algebraically as follows:

E = Rome X 755 U Athens X 345
U London X 231 ....
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where X is the cartesian product and U is the union. Rome X 755 is
the first tuple in E (without classification)

Remark: If one think of Rome, 755, Athens,... as attibute value
pairs (supressing the notation of attribute), then E can be
written as

E = (Rome) (755)+(Athens) (345)+(London) (231)+...

where the record is represented by juxtaposition and union by +.
This is a "formal homogeneous polynomial" on literals.

To compute the tuple security class, we can computed as follows:

[E) = [Rome X 755) # [Atohens X 345]
# [London X 231] ....

where # is the least upper bound operator and [Z] denotes the
security class of Z.

If the relation has been classified to the element level, then we
can re-express it by

[E] = [Rome] # [755) # [Athens] # [345]
# [London] # [231] ....

Intrinsically, this a homomorphism from the ring of "formal
homogeneous polynomials" to lattice (as a semi group of least
upperbound operator), mapping both"plus" and "product" to the least
upper bound operator.

We would like to emphasize that any piece of information in
multilevel database should have a security classification (SC). In
fact, if we interpret a multilevel database system by the Bell
Lapdula model (such as SeaView), then indeed every piece of
information should have a security classification, including items
in data dictionary. Mathematically, there should be a security map
from P(D) to SC.

[]: P(D) ----- > SC

So a multilevel database system is a triple

(P(D), [], SC),

where D is all the primitive data including items in data
dictionary.

In almost all of the works in computer security, all have assumed
that a security map on primitive data is given

[:D ------- > SC
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As we have mentioned earlier that the security map [] should have
an extension to the power set P(D). This extension is an
exponential problem. In [Lin90], we propose to extend the security
map algebraically.

Let us rephrase the Example 2.1, the primitive data is

D = (Rome, 755, Athens, 345, London, 231, Berlin, 500
Paris, 500, TOTAL, 2331)

and their security classes are assigned in the table, for example
(Rome]=S, [755]=S.

Here a tuple is a de--ived data, since it is a cartesian product of
elements. The tuple classes can be computed by the least upper
bound operator. The relation also is a dervied data since it is
union of tuples. All their security classes can be computed by
least upper bound operator.

As examples, let us compute the security class of E:

[E] = [Rome] # (755] # (Athens] # [345]
# (London] # (231] ....
= s # S # S # S
# C # C......
= S.

So the classification of E is S.

2.2. Database with Aggregation

Now, we turn our attention to the case in which database has
aggregation problem. Roughly speaking, a collection of facts has a
classification strictly greater than that of the individual facts
forming the aggregate. Moreover, as Lunt remarked, "To qualify as
an aggregation problem, it must be the case that the aggregate
class strictly dominates the class of every subset of '-he
aggregate." We refer to (Lin89cj, or [Lin90] for formal treatments.

A solution of a single aggregation is:

Let E = (El,E2,...Ek) be an aggregate

(1) Add to the database a new primitive generator E
(2) Remove El, E2,...Ek from the original primitive generators
(3) The release of any of El, E2,..., Ek are handled by SSO or
a special mechanism [Lin90]. Effectivel, Ei's are "upgraded" to the
level of aggregate E.

A solution for the aggregation problem is an algorithm called APR
[Lin90], which selects a subset of aggregates called marked
aggregates. The family of marked aggr.egates has the following
properties
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(1) No compromise in protection (provide the same protection
as original aggregates)

(2) If the SC is linear, then they are pairwise disjoint.
(each data belongs to at most one aggregate; in any real
implementation, one needs this)

(3) If [E] and [F] are non comparable, they E and F may
have intersection.

Example 2.2

Let E' be the same as above example E except that the security
classification of the first tuple is changed to

El

cityname Cl #-troops CL Tupleclass .....

Rome S 755 S TS

(rest of the items are same as above)

That is, the first tuple class is TS which is strictly higher than
[Rome] and (755). So this tuple is an aggregate.

We recall that if the database has aggregation, then the primitive
data D is the collection of

(1) marked aggregates and

(2) primitived data that are not in any marked aggregate.

For this example, we have the following primitive data

(1) (Rome, 755) -- marked aggregate
(2) Athens, 345, London, 231, Berlin, 500

Paris, 500, TOTAL, 2331

Note the security class of (Rome, 755) is TS.

Let us compute the security class of the following view (instance):

V:
cityname C1 #_troops CL Tupleclass

Rome S 755 S TS
Athens S 345 S S
London C 231 C C

The security class of this view V can be computed as follows:

[V] = [Aggregate containing Rome] # [Athens] # [345]
# [London] # [231] ....
= [Rome X 755] # [Athens] # [345]
# [London] # [231] ....
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- TS # S # S
# C #C .....
= TS.

Let us consider another view W

W
cityname

Rome
Athens
London
Berlin
Paris

Then the security class of this view is:

[W] = (Aggregate Containing Rome] # (Athens]
# (London] # (Berlin] # (Paris]
= TS # S # S # C # S # S

By our aggregation solution, Rome is in the aggregate (Rome, 755),
so its security class is the class of (Rome X 755] = TS.

=TS

Example 2.3

Let A be the follwoing sub-relation of E in Example 2.1

cityname Cl #_troops CL Tuple_class

Rome S 755 S S
Athens S 345 S S
London C

The classification of A is [A] = TS. Since (A] is strictly higher
than each individual elements and any subsets, it is an
aggregation.

Let us consider a view (instance)

X:

city_name Cl #_troops CL Tupleclass

Rome S 755 S TS
Athens S 345 S S
London C 231 C C ...
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The security class of this view V can be computed as follows:

[X] = [Aggregate containing Rome]
# [Aggregate containing Athens]
# [Aggregate containing 345]
# [Aggregate containing London)
# [231] ....
- [A] # [A] # [A] # [231] ....
= TS # TS # TS # TS # C
= TS

3. LATTICE MODEL - AN "INFERENCE" FREE MULTILEVEL DATABASE

Let D be a primitive data of a database (there is no aggregation
problem) and its security classes are assigned, say by DOD. Namely
the map

[:D ------ > SC

is given by DOD.

The extension

[]: P(D) ----- > SC

is given by the "homomorphism" as explained in Example 2.1.

Intuitively, it means every view (instance) is defined by the least
upper bound of its primitive data. For example, the security class
of a tuple (which is a view with one row) is the least upper bound
of individual elements. For example, the security class of the
tuple

[Rome X 755 J = l.u.b of [Rome) and [755]

So the tuple class of Rome X 755 is S.

This is essentially Denning's lattice model [Denn76]. The security
class of a derived data is the least upper bound of its component.

Let us examine the behavior of the security classes under
relational operators.

Under lattice model, the security class of a collection of data is
the l.u.b. of all individual elements (note this is a database
without aggregation). So we have the following results:

(3.1) Cartesian product

[F X G] = [F] # [G]

F X G consists all possible elements in F and G, so [F X G] is the
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[F X G] = (F] # [G]

F X G consists all possible elements in F and G, so [F X G] is the
l.u.b. of all possible elements in F or G, hence it is the l.u.b.
of [F] and [G]. This prove the assertion.

(3.2) Union

[F U G) = [F) # [G]

The proof for Cartesain product works for union too.

(3.3) Differecne

[F \ G] =< [F)

F \ G is a subset of F.

(3.4) Divide

[F / G] =< [F]

F / G is a subset of F.

(3.5) Intersection

(F n G] =< g.l.b. ([F], [G]) = [F]A[G]

where n is intersection and [ ]^[ ) is the g.l.b. in lattice.

(3.6) Selection

[Select F, where .... ] =< [F]

A Selection of F is a subset of F.

(3.7) Join

[F * G] =< (F] # [G]

By definition, F * G is a subset of Cartesian product F X G.

so [F * G] =< [F X G] = [F] # (G)

(3.8) Projection

[Proj F to .... ] =< [F]

A projection of F is a subset of F

These analysis leads us to conclude the follwoing proposition.
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E = f(F, G, ... )

be an algebraic expression of relational algebra. Then

[E] =< l.u.b. ([F], [G],...)

Proof: By replacing all the relational operators in f by the right-
most expression of (3.1)-(3.8), we have

[E]=[f(F,G,..)] - [f]([F].[G],..) =< l.u.b.([F].[G],..)

where [f] is the corresponding algebraic expression of f in the

lattice SC.

Verbally, the proposition concludes that

(Relational operations on F, G, .. ] =< l.u.b. ([F],[G],..)

In other words, we have

Theorem. If the security classification of a database gives rise a
lattice model, then the database is "inferecne" free.

This should not be a surprise, see Conclusion.

4. AGGREGATED SECURITY ALGEBRA - AN "INFERENCE" FREE MULTILEVEL
DATABASE

Now let us consider the multilevel database with aggregation
[Lin90a]. Again the security map []:D -- > SC is given by DOD and
the security map []: P(D) -- > SC can be determined by the
aggregated security algebra. Note that D consists of marked
aggregates and primitive data which are not in any of the
aggregates.

Once D is chosen, the aggregated security algebra behaves like
lattice model. Therfore all the arguments in last section applies.
Just for example, let us examine the case of join operator.

Let X be a relation. Then, in aggregated security algebra

[X] = the least upper bound of

(1) primitive data in X and
(2) aggregates which contains elements in X

(See the computation of Example 2.2 and 2.3).

As in (3.7) last section, F * G is a subset of Cartesian product F
X G, so

[F * G) =< [F X G] = (F] # [G].
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That is,

[E] =< (F] # [G]

Therfore, the inference can not exist in aggregated security
algebra either. Let us quote the reuslts without proof.

Proposition. Let

E = f(F, G, ... )

be an algebraic expression of relational algebra. Then

[E] =< l.u.b. ([F], [G],...)

Verbally, the proposition concludes that

[Relational operations on F, G, .. ] =< l.u.b. ([F],[G],..)

In other words, we have

Theorem. If the security classification of a database gives rise an
aggregated security algebra, then the database is "inferecne" free.

5. FORMAL SECURITY ALGEBRA

In implementing such computation, the notion of formal security
agebra is beneficial. During the query processing, a query may go
thoruh all the intermediate computations and hence reaching a
security class that maybe well above the security class of final
results (especailly if one uses the high-water-mark policy). To
avoid this one should use the notion of formal security classes.
Formal security classes form a ring of formal polynomials over the
security classes as its formal variables. The formal classes are
not interpreted until the final result. For example, binding the
formal product with the leat upper bound operator of lattice will
not be done until the output time. The actaul development of formal
security algebra is quite lengthy and it may confuse the essential
issues here. An exposition of formal security classes is too much
a digression here, even though we did illustrate the idea in the
oral presentation at workshop.

6. CONCLUSION

The results may surprise many readers. But it is a natural
consequence of the theory of security algebra. Note that in
aggregated security algebra or lattice mode, a derived data is
assigned a security class by algebraic relation. So in the
aggregated security algebra and lattice model, there is no
inconsistency in security classification among variables or data in
algebraic relations. The "inference" is dervied from the
inconsistency of assigning the security classes among datas in
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algebraic relations. So our theorem is a natural consequence of
security algebra. In literature, aggregation and "inference"
problems are separated, in fact, from our point of view the two
notions are in one. A good solution for aggregation problem always
implies a solution on "inference" problems (that is, there is no
"inference"; again we should disclaim here that there are no
results on inference.
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HANDLING SECURITY CONSTRAINTS DURING

MULTILEVEL DATABASE DESIGN

Bhavani Thuraisingham

The MITRE Corporation, Burlington Road, Bedford, MA

Abstract

In this paper we describe techniques for processing association-based constraints, simple
constraints, and logical constraints during multilevel database design.

1 INTRODUCTION

In a multilevel secure database management system (MLS/DBMS) users cleared at
different security levels access and share a database consisting of data at different sensitivity
levels. A powerful and dynamic approach to assigning sensitivity levels, also called security
levels, to data is one which utilizes security constraints or classification rules. Security
constraints provide an effective and versatile classification policy. They can be used to assign
security levels to the data depending on their content and the context in which the data is
displayed. They can also be used to dynamically reclassify the data. In other words, the
security constraints are essential for describing multilevel applications.

Handling security constraints in multilevel database systems has received some attention
during the past five years. An early attempt to identify various types of security constraints was
made in [DENN86, DWYE87]. The security constraints that were identified included those that
classify data based on content, context, aggregation, and time. Later, in an article [STAC90],
we described the design of an MLS/DBMS in which security constraint processing was
fundamental. The work reported in [THUR87, KEEF89, THUR89, THUR90aJ suggest ways
of handling security constraints during query processing in such a way that certain security
violations via inference does not occur1 . The work reported in [MORG87, HINK88,
LUNT89, SMIT901 focuses on handling constraints during database design where suggestions
for database design tools are given. They expect that security constraints during database
design are handled in such a way that security violations cannot occur. While the previous
papers discuss how security constraints may be handled, they do not provide viable approaches
or algorithms for actually processing them.

From an analysis of the various types of security constraints, we believe that they are a
form of integrity constraints enforced in an M.LS/DBMS. This is because in a multilevel
database one can regard the security level of an entity to be part of the value of that entity.
Thercfore security cowsuaints spcefy permissible values that an entity can take. Since security
constraints can be regarded as a form of integrity constraints, many of the techniques developed

I Inference is the process of drawing conclusion from premises. It becomes a problem if the conclusions drawn are
unauthorized.
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for handling integrity constraints in non-multilevel relational database systems by the logic
programming researchers (see, for example, GALL78, MINK88]) could be used for handling
security constraints in an MLS/DBMS. In these techniques, some integrity constraints, which
are called derivation rules, are handled during query processing, some integrity constraints,
known as integrity rules, are handled during database updates, and some integrity constraints,
known as schema rules, are handled during database design. Our approach to handling security
constraints has been influenced by (i) the approach taken to process integrity constraints by the
logic programming researchers [LLOY87], and (ii) the design of Lock Data Views [STAC90], a
high assurance MLS/DBMS, in which constraint processing is fundamental.

We have defined various types of security constraints. They include the following:

(i) Constraints that classify a database, relation or an attribute. These constraints are
called simple constraints.

(ii) Constraints that classify any part of the database depending on the value of some
data. These constraints are called content-based constraints.

(iii) Constraints that classify any part of the database depending on the occurrence of
some real-world event. These constraints are called event-based constraints.

(iv) Constraints that classify associations between data (such as tuples, attributes,
elements, etc.). These constraints are called association-based constraints.

(v) Constraints that classify any part of the database depending on the information that
has been previously released. These constraints are called release-based constraints.

(vi) Constraints that classify collections of data. These constraints are called aggregate
constraints.

(vii) Constraints that classify any part of the database depending on the security level of
some data. These constraints are called level-based constraints.

(viii)Constraints which assign fuzzy values to their classifications. These are called fuzzy
constraints.

(ix) Constraints which specify implications. These are called logical constraints. (Note
that logical constraints do not classify any data and therefore cannot be regarded as
security constraints. Nevertheless we will see that they play an important role in
security constraint processing.)

We believe that an integrated approach to security constraint processing is necessary. That
is, some constraints should be processed during the query operation, some during the database
update operation, and some during the database design operation. While our previous papers
(see, for example, FORD90, COLL90]) have described prototypes which process security
constraints during the database query and update operations, this paper describes the techniques
that we have designed to process security constraints during the database design operation. Our
main focus is on processing the association-based constraints which classify relationships
between a collection of attributes at a particular security level. We also describe briefly how
simple and logical constraints could be processed during the database design operation.

The organization of this paper is as follows. In section 2 we describe techniques for
handling the association-based constraints. A note on processing simple constraints is
discussed in section 3. Handling logical constraints is discussed in section 4. The paper is
concluded in section 5.
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2. HANDLING ASSOCIATION-BASED CONSTRAINTS

2.1 OVERVIEW

An association-based constraint classifies a collection of attributes taken together at a
particular security level. What is interesting about the association-based constraint is that it can
generate several relationships between the various attributes. For example, if there is a relation
SHIPS whose attributes are S#, SNAME, and CAPTAIN, and if an association-based
constraint classifies the SNAME and CAPTAIN taken together at the Secret level, then one of
the pairs (S#, SNAME), (S#, CAPTAIN) should also be classified at the Secret level.
Otherwise, an Unclassified user can obtain the (S#, SNAME) and the (S#, CAPTAIN) pairs
and infer the Secret association (SNAME, CAPTAIN). There has been much discussion in the
literature as to the appropriate place to handle these association-based constraints. Some argue
that they should be handled during database design [LUNT89] while others argue that they
should be handled during query and update processing [STAC90]. However, none of the work
reported so far studied the properties of these association-based constraints, nor has it provided
any technique to generate the additional association-based constraints that can be deduced from
an initial set of association-based constraints.

We first describe an algorithm which processes a given set of association-based
constraints and outputs the schema for the multilevel database. Given a set of association-based
constraints and an initial schema, the algorithm will output clusters of attributes and the security
level of each cluster. We then prove that the attributes within a cluster can be stored securely at
the corresponding level. A tool based on this algorithm can help the systems security officer
(SSO) design the multilevel database. The algorithm that we have designed does not necessarily
have to be executed during database design only. It can also be executed during query
processing. That is, the query processor can examine the attributes in the various clusters
generated by the algorithm and then determine which information has to be released to the users.
For example, if the algorithm places the attributes A1, A2 in cluster 1 at level L, and the
attributes A3, A4 in cluster 2 at level L, then, after an attribute in cluster 1 has been released to a
user at level L, none of the attributes in cluster 2 can be released to users at level L.

Next, we study the properties of association-based constraints by treating them as a
form of data dependency for multilevel databases.2 We define the relationships that are
generated between the various attributes from a set of association-based constraints as
association dependencies. We then investigate ways of generating all the association-
dependencies from a given set of association-based constraints. Our ultimate goal here is
to generate a minimal derivation of the association dependencies. Using such a derivation,
the relationships between the attributes could be assigned security levels which do not
result in overclassification. 3

2 Data dependencies have played an important role in the design of ordinary (i.e., non-multilevel) databases

[MAIE83].

3 The intent is to assign minimum security levels to the various relationships between the attributes necessary
to maintain security.
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In section 2.2 we describe an algorithm for handling association-based constraints during
database design. A note on association dependencies is discussed in section 2.3.

2.2 ALGORIHM FOR HANDLING ASSOCIATION-BASED CONSTRAINTS

In this section we describe an algorithm for handling association-based constraints. The
input to this algorithm is a set of association-based constraints and a set of attributes. The
output of this algorithm is a set of clusters for each security level. Each cluster for a security
level L will have a collection of attributes that can be safely classified at the level L. That is, if
A 1, A2, and A4 are attributes in a cluster C at level Secret, then the attributes A 1, A2, and A3
can be classified together safely at the security level Secret without violating security. The
clusters are formed depending on the association-based constraints which are input to the
program. Once the clusters are formed, then the database can be defined according to the
functional and multivalued dependencies that are enforced.

ALGORITHM HABC (Handling Association-Based Constraints)

Begin

Let C be the set of association-based security constraints and WI, W2 ........ Wm be the
set of attributes which are input to the program.

An association-based security constraint is represented by A I.A2 ........... An = L where
A l, A2 ...... An are attribute and L is a security level. What it means is that the attributes
A 1, A2 ...... An taken together must be classified at level L.

For each security level L, do the following:

Begin
Let C[L] be the largest subset of C. That is, C[L] consists of the set of
constraints which are visible at level L.

Let A = JAI, A2 ....... An) be the largest subset of [WI, W2 ...... Wm), such
that the elements of A are visible at level L.

Since n is the number of attributes which are visible at level L, clusters
Cl, C2 ...... Cn will be formed as follows:

Set CI = C2 = C3 = ....... = Cn = Empty-set.
For each i (1 < i :5 n) do the following:

Begin
Find the first cluster Cj (1 <j 5 n) such that Ai, together with any
of the attributes already in Cj, are classified at a level dominated
by L by the set of constraints C[L].
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Place Ai in the cluster Cj. (Note that since we have defined n
clusters, there will definitely be one such Cj.)

End (for each i).

Output all the non-empty clusters along with the security level L.

End (for each security level L).

End (HABL)

Theorem 1: Algorithm HABL is Sound.

Proof of Theorem 1:

We need to show that for every security level L, the attributes in a cluster formed at L can
safely be stored together in a file at level L.

Let C be a cluster at level L, and let B 1, B2, ....Bi be the attributes in C. Note that before
each Bi is placed, it will be first checked to determine whether or not there is an association-
based constraint which classifies Bi together with any subset of the attributes B 1, B2, ...... Bi- 1
already in C at a level not dominated by L. If so, Bi would not have been placed in the cluster
C.

Since this is true for each Bi (1 S i _ r), there is no association-based constraint which
classifies any subset of B 1, B2 .... Br taken together at a level not dominated by L. Therefore,
B1, B2, ........ Br can be safely stored in a file at level L.

Theorem 2: Algorithm HABL is Complete.

Proof of Theorem 2:

We need to show that, if Ci and Cj are two clusters at a level L, there are subsets A and B,
respectively, of Ci ard Cj, such that A and B cannot be stored together in a file at level L.

Let i < j. Then the cluster Ci appears before Cj, in the enumeration of the clusters formed
at level L.

Suppose, on the contrary, that A and B do not exist Consider an element X of cluster Cj.
Since Ci is before Cj in the enumeration, before placing X in Cj, it would have been first
checked to determine whether or not X can be placed in Ci. It would have been found that there
was an association-based constraint which classifies X together with the attributes already in a
subset P of C' at a level not dominated by L. That is, the subset P and {X) of Ci and Cj
respectively cannot be stored in a file at level L. That is, we have found two sets, A and B,
which are subsets of Ci and Cj, respectively, which cannot be stored in a file at level L. This is
a contradiction to our assumption.
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We now trace the algorithm with a simpl example.

Let the attributes be A1, A2, A3, A4, A5. Let the constraints be the following:
CONI: AI • A2 = Secret4
CON2: A I A5 =Secret
CON3: AI * A4 A5 = Secret
CON4: A2 A4 =Secret
CON5: A3 A4 =Secret

Note that some of the constraints are redundant. For example, CON2 implies CON3. In
this paper we are not concerned with the redundancy of the constraints.

Since the maximum classification level assigned is Secret, all the attributes can be stored in
a file at the level Secret or Higher. At the Unclassified level, the following clusters are created:

Cl = (Al, A31
C2 = (A2, A5}
C3 = (A4).

It should be noted that, although the algorithm guarantees that the constraints are
processed securely, it does not provide any guarantee that the attributes are not overclassified.
More research needs to be done in order to develop an algorithm which does not overclassify an
attribute more than is necessary.

2.3 A NOTE ON ASSOCIATION DEPENDENCIES

In this section we define a new type of dependency, which we call association
dependency (AD) for multilevel databases. We then develop a set of inference rules which
generates all association dependencies from the set of axioms. The axioms are the initial
association dependencies which are given. Note that these initial dependencies are the
association-based constraints that are specified. Our ultimate goal is to generate a minimal
set of association dependencies from a set of association-based constraints. The minimal
derivation will be such that it generates no more association dependencies than is necessary
in order to provide security. A design based on such a derivation will guarantee that the
attributes of the relations are not overclassified.

It should be noted that the first step toward the design of a multilevel k!atabase would
be to decompose the attributes properly, based on the association dependencies. Once the
association-based dependencies are handled, then further design of the database can
proceed, depending on the functional and multivalued dependencies enforced. In this
paper we do not address the issues of functional and nmultivalued dependencies for
multilevel databases. We refer to the work reported in [DENN87, ONUE87, JAJO901 for
a discussion on these other data dependencies.

4 By "Al • A2 = Secret" is meant: Al and A2 taken together are classified at the Secret aevel.
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Below we first define association dependencies and then describe some inference

rules for generating association dependencies.

Association Dependencies

An association dependency is represented by (XI.X2........ Xn, L) where each Xi
(1 < i 5 n) is an attribute structure and L is a security level. An attribute structure could be
either an attribute or it could be a tuple of attribute structures. What the association
dependency means is that the attribute structures X l, X2 ...... Xn taken together is
classified at the level L. It can be seen that every association-based constraint generates an
association dependency. An association dependency will generate other association
dependencies between the various attribute structures.

If there is an association-based constraint which classifies A l and A2 taken together
at a level L, then the corresponding association dependency will be denoted as follows:
(A l * A2, L).

Note that A l and A2 do not have to be singleton attributes. They can be a tuple of
attributes. That is, if there is a constraint which classifies the collection (Xl, X2 .... Xn)
together with the collection (Y 1, Y2 ...... Ym) at the level L, then the dependency is
denoted by ((X1, X2, ...... Xn) * (Y1, Y2, ....... Ym), L).

For convenience, we can denote the tuple (Xl, X2 ...... Xn) by X and the tuple
(Yl, Y2 ...... Ym) by Y. Then the dependency is denoted by (X * Y, L).

Note that each association-based constraint can produce one or more association
dependencies between the various attributes. For example, let an association-based
constraint classify the attributes X and Y at level Secret. Let Z be a third attribute. Note
that, if the attributes X, Z, taken together, are classified at the Unclassified level and the
attributes Y, Z, taken together, are classified at the Unclassified level, then an Unclassified
user could get the Secret association between X and Y. Therefore, at least one of (X,Z),
(Y,Z) must be classified at the Secret level.

The question is, how can one enumerate all the association dependencies from an
initial set of association dependencies? We answer this question by defining a set of
inference rules for association dependencies which are sound and complete. That is, given
a set of association dependencies, one can generate all the association dependencies using
the inference rules. Further, any dependency that is generated is a valid dependency. Note
that results along similar lines have been obtained for functional and multivalued
dependencies [MAIE83].

Inference Rules

We state four inference rules to enumerate the association dependencies from an
initial set of axioms. Each rule will be illustrated with examples. Issues on the
consistency and completeness of the rules as well as the use of graphs for generating
association-based dependencies are described in [THUR90b].
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Rule 1: (Permutation Rule):
V n ((XI • X2 . ......... Xn), L) ==> ((Yl • Y2 . ............ Yn), L)
where for each Y1, Y2, ....... Yn is a permutation of Xl, X2, ..... Xn.

Example: If(A I A2, L), then (A2 • A1, L). That is, if there is an association
dependency between A l and A2 at level L (i.e., A l and A2 taken together are classified at
level L), then there is one between A2 and Al.

Rule 2: (Decomposition Rule)
V n ((XI • X2 . ......... Xn), L) V Z ((Y .Z, L) V ((X - Y) • Z), L)

where X = (X 1, X2 ........ Xn) and Y is either a subtuple of X, or Y is a
component of X.

Note: Y is a subtuple of X if Y = (Y1, Y2 ...... Ym) and for each i (1 _< i _ m)
Yi E {X1, X2, ....... Xn). X - Y consists of the remaining Xi's.

A component of X is defined as follows: Let UX be all the attributes which
constitute X. Note that this is obtained by first finding all the attributes in each Xi and then
forming the union of all of them. Y is a component of X if Y is a subset of UX. Then
X - Y has all the elements in UX which are not elements of Y.

Example: (Al • A2, L) =-> (Al • A3, L) V (A2 • A3, L)

Rule 3: (Partitioning Rule) V n ((XI • X2 . ......... Xn), L) -=>
((YI • Y2 . ......... Ym), L)

where Y1, Y2, ...... Ym is any m-tuple which constitutes X = (XI, X2 ........ Xn),
Yi and Yj ( 1 < i, j < m) do not intersect and either Yi (1 < i <5 m) is a subtuple of X
or Yi is a component of X.

Note that by Y constituting X we mean UY = UX.

Example: (A I • A2 * A3 - A4, L) => (((A l, A3) - (A2, A4)), L)

Rule 4: (Augmentation Rule) V n ((Xl * X2 . ......... Xn), L) ==>
V Z ( (Xl • X2 ......... Xn • Z), L)

Example: (Al I A2, L) => (Al I A2 • A3, L)

We now define derivations of ADs from axioms. Given a set of ADs (which are
regarded as the axioms), we say that an AD X • Y has a derivation if it is either an axiom or
if it has a proof Z1, Z2 ........ Zn such that Zn = X • Y; and for each i (1 !5 i! n), Zi is an
axiom or it can be derived from (Z1, Z2 ....... Zi- I) using the inference rules described in
this section.

154



3. A NOTE ON SIMPLE CONSTRAINTS

Since simple constraints classify individual attributes at a certain security level, they could
also be handled during database design. Note that when an attribute A in relation R is classified
at level L, then all elements which belong to A is also classified at level L. Therefore, we can
store A itself at level L.

The algorithm which handles simple constraint is straightforward. Each attribute that is
classified by a simple constraint is stored at the level specified in the constraint. Once the
algorithm for processing simple constraints is applied and the corresponding schema is
obtained, then this schema is given as input to the algorithm handling association-based
constraints. The association-based constraints are then applied and the final schema is obtained.

We illustrate the combined algorithm with an example.
Let relation R have attributes A 1, A2, A3, and A4. Let the constraints enforced be the
following:

Simple constraint: A4 is Secret
Association-based constraint: A2 and A3 together are TopSecret.

Applying the algorithm for handling simple constraints we obtain the following result.
A 1, A2 and A3 are Unclassified; A 1, A2, A3, and A4 are Secret.

Next we apply the algorithm for handling association-based constraints. The final output is:
A l and A2 are Unclassified; A 1, A2, and A4 are Secret; A 1, A2, A3, and A4 are TopSecret.

4. HANDLING LOGICAL CONSTRAINTS

Logical constraints are rules that can be used to deduce new data from existing data. If a
security constraint classifies the new data at a level that is higher than that of the existing data,
then the existing data must be re-classified. Logical constraints could be straightforward such
as Ai =-> Aj (which means that the value of Ai implies the value of Aj) or they could be more
complex such as A l & A2 & A3 & ........ An ==> Am (which means that the values of
Al, A2 ...... An imply the value of An). In the case of the first rule, if Aj is classified at the
Secret level then Ai must be classified at least at the Secret level. In the case of the second rule,
if Am is classified at the Secret level, then at least one of A 1, A2 ...... An must be classified at
least at the Secret level.

We have developed techniques to handle logical constraints during query processing as
well as during database design. For example consider the constraint Ai =-> Aj. If Aj is
classified at the Secret level, and an Unclassified user requests for Ai values, the query
processor will ensure that the values for Ai are not released. That is, although Ai may be
explicitly assigned the Unclassified level, since the logical constraint is treated as a derivation
rule, it does not cause any inconsistency. That is, during query processing, the security level of
Ai will be computed to be Secret.
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For logical constraints which do not have any conditions attached, it appears that they
could be handled during database design. That is during design time the logical constraints are
examined, and the security levels of the attributes specified in the premise of a constraint could
be computed. For example, if Aj is classified at the Secret level then it must be ensured during
design time that Ai is classified at least at the Secret level also. The following algorithm will
ensure that the security levels are computed correctly.

1. Do the following for each logical constraint. (Note that we have assumed that
the constraints are expressed as horn clauses. That is, there is only one atom in
the head of a clause.)

2. Check whether there are any simple constraints which classify the attribute
appearing in the head of the logical constraint at any level. If not, ignore the
constraint.

3. If so, find the security level L that is specified for this attribute.

4. Check whether any of the attributes appearing as premises of the logical
constraint are classified at least at level L. If so, ignore-the constraint.

5. If not, classify one of the attributes (say, the first one) at the level L.

The algorithm given above does not ensure that the attributes are not overclassified. In order to
avoid the overclassification problem, modification must be made to step 5. That is, once an
attribute is assigned a security level, it is possible for the level to be re-assigned based on other
logical constraints that are handled. Our current research includes investigating techniques for
successfully assigning security levels to the attributes and at the same time avoiding
overclassification.

When logical, simple, and association-based constraints are combined, then the first step
would be to handle the simple constraints. The next step would be to apply the algorithm given
above for the logical constraints. Finally the algorithm given in section 2 is applied for the
association-based constraints.

5. CONCLUSION

In this paper we first described association-based constraints and discussed the
various approaches that have been suggested to handle them. Then we described an
algorithm which generates the schema for a multilevel database when given a set of
association-based constraints. We proved that the algorithm was correct, and we also
argued that any database designed using the algorithm will be secure.

Our algorithm did not guarantee that the attributes are not overclassified. This led us
to a formal study of the association-based constraints. We provided a way of treating them
as a form of data dependency. Subsequently, we introduced the notion of association
dependency and described a set of inference rules that will generate all association
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dependencies from a given set of dependencies. Finally we described techniques for
handling the simple and logical constraints during database design.

The next step will be to incorporate the techniques we have designed in order to
develop a tool for multilevel database design. In addition, our work on association
dependencies should be extended further so that a theory of multilevel relational databases
is developed.
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MULTILEVEL SECURE DATABASE MANAGEMENT SYSTEM
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The MITRE Corporation, Burlington Road, Bedford, MA 01730

A bstract

This paper provides an overview of security constraints and describes an integrated
approach to security constraint processing

1 INTRODUCTION

Security constraints are rules which assign security levels to the data. They can be used
either as integrity rules, derivation rules, or as schema rules (such as data dependencies). If
they are used as integrity rules, then they must be satisfied by the data in the multilevel
database. If they are used as derivation rules, they are applied to the data during query
processing. If they are used as data dependencies, they must be satisfied by the schema of the
multilevel database.

We have defined various types of security constraints. They include the following:

(i) Constraints that classify a database, relation, or an attribute. These constraints are
called simple constraints.

(ii) Constraints that classify any part of the database depending on the value of some data.
These constraints are called content-based constraints.

(iii) Constraints that classify any part of the database depending on the occurrence of some
real-world event. These constraints are called event-based constraints.

(iv) Constraints that classify associations between data (such as tuples, attributes, elements,
etc.). These constraints are called association-based constraints.

(v) Constraints that classify any part of the database depending on the information that has
been previously released. These constraints are called release-based constraints. We
have identified two types of release-based constraints. One is the general release
constraint which classifies an entire attribute depending on whether any value of
another attribute has been released. The other is the individual release constraint which
classifies a value of an attribute depending on whether a value of another attribute has
been released.

(vi) Constraints that classify collections of data. These constraints are called aggregate
constraints.

(vii) Constraints that classify any part of the database depending on the security level of
some data. These constraints are called level-based constraints.

(viii) Constraints which specify implications. These are called logical constraints.
(ix) Constraint which classify constraints and metadata. These are called meta-constraints.
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In our approach, some constraints are processed during the query operation, some during
the update operation, and some during database design. Our integrated approach is described
in section 2.

2 INTEGRATED APPROACH

As stated in section 1, security constraints enforce a classification policy. Therefore, it is
essential that constraints are manipulated only by an authorized individual. In our approach,
constraints are maintained by the SSO. That is, constraints are protected from ordinary users.
We assume that constraints themselves could be classified at different security levels.
However they are stored at system-high. The constraint manager, which is trusted,l will
ensure that a user can read the constraints classified only at or below his level.

Our approach to security constraint processing is to handle certain constraints during
query processing, certain constraints during database updates, and certain constraints during
database design. The first step was to decide whether a particular constraint should be
processed during the query, update, or database design operation. After some consideration,
we felt that it was important for the query constraint processor to have the ability to handle all
of the security constraints. Our thesis is that inferences can be most effectively handled, and
thus prevented, during query processing. This is because most users usually build their
reservoir of knowledge from responses that they receive by querying the database. It is from
this reservoir of knowledge that they infer unauthorized information. Moreover, no matter
how securely the database has been designed, users could eventually violate security by
inference because they are continuously updating their reservoir of knowledge as the world
evolves. It is not feasible to have to redesign the database simultaneously.

The next step was to decide which of the security constraints should be handled during
database updates. After some consideration, we felt that except for some types of constraints,
such as the release and aggregate constraints, the others could be processed during the update
operation. However, techniques for handling constraints during database updates could be
quite complex, as the security levels of the data already in the database could be affected by the
data being updated. Therefore, initially our algorithms handle only the simple and content-
based constraints during database updates.

The constraints that seemed appropriate to handle during the database design operation
were those that classified an attribute or collections of attributes taken together. These include
the simple and association-based constraints. For example, association-based constraints
classify the relationships between attributes. Such relationships are specified by the schema
and therefore such constraints could be handled when the schema is specified. Since a logical
constraint is a rule which specifies the implication of an attribute from a set of attributes, it can
also be handled during database design.

I We assume that a trusted process is a process whose functions we security critical (the is. enforces part of the
security policy). Therefore it must be ensured that it operates correctly. The techniques used to ensure its
correctness depend on the level of assurance that is expected of the system.
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Note that some constraints can be handled in more than one way. For example, we have
the facility to handle the content-based constraints during query processing as well as during
database updates. However, it may not be necessary to handle a constraint in more than one
place. For example, if the content-based constraints are satisfied during the database update
operation, then it may not be necessary to examine them during query processing also.
Furthermore, the query operation is performed more frequently than the update operation.
Therefore, it is important to minimize the operations performed by the query constraint
processor as much as possible to improve performance. However, there must be a way to
handle all of the constraints during query processing. This is because if the real-world is
dynamic, then the database data may not satisfy all of the constraints that are enforced as
integrity rules, or the schema may not satisfy the constraints that are processed during database
design. This means that there must be a trigger which informs the query constraint processor
that the multilevel database or the schema is not consistent with the real-world; in which case
the query constraint processor can examine the additional constraints.

Below, we briefly illustrate the architectures for processing constraints during the query,
update, and database design operations. The architecture for query processing is shown in
figure 1. This architecture can be regarded as a loose coupling between a multilevel relational
database management system and a deductive manager. The deductive manager is what we
have called the query constraint processor. It has to operate on-line. 2

Quer
Request/
Response

User Interface

T
Inference
Engine
for Query
Processing

Figure 1. Query Constraint Processor

2 We use the terms Inference Engine and Deductive Manager to mean the same thing. An Inference Engine makes
deductions from data and knowledge. For our application it processes security constraints. makes logical
deductions, and determines whether there is a potential security violation via inference.
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The architecture for update processing is shown in figure 2. This architecture can be
regarded as a loose coupling between a multilevel relational database management system and a
deductive manager. The deductive manager is what we have called the update constraint
processor. It could be used on-line where the security levels of the data are determined during
database inserts and updates, or it could be used off-line as a tool that ensures that data entered
via bulk data loads and bulk data updates is accurately labelled. If the tool is used off-line,
however, it may be difficult to recompute the levels of the data already in the database if these
levels are affected by the new data that is being inserted.

Update
Request/
Status

User Interface

Engine
I for Update

Processing

[ M]LS/DBMS DMatafibaseel)

Figure 2. Update Constraint Processor

The tool which handles security constraints during database design, illustrated in
figure 3, can be used by the Systems Security Officer to design the schema. The input to the
tool is the set of security constraints that should be handled during database design and the
schema. The output of the tool is the modified schema and the constraints. We envisage a tool
to be operated off-line.

Multilevel Database
SDesign Tool _-_

Input to Tool: for Processing the Output from Tool:
Input Schema and Input Schema and Output Schema and
Security Constraints Security Constraints Modified Constraints

Figure 3. Multilevel Database Design Tool
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There are essentially two tasks involved in constraint handling. They are constraint
generation and constraint enforcement. While our main focus has been on constraint
enforcement (see for example [FORD90, COLL90, THUR91]) the relationship between the
two tasks is illustrated in figure 4. That is, the constraint generator takes the specification of
the multilevel application and outputs the initial schema and the constraints that must be
enforced. The database design tool takes this output as its input and designs the database. The
constraints and schema produced by the database design tool are used by the update constraint
processor and the query constraint processor.

Application
Specification

Constraints/Schema
Generator

Schema and
Constraints

Database Design Tool

ModifiedSchema and

Constraints

Query Update
Processor Processor

Figure 4. Constraint Generation and Enforcement

Although the query constraint processor, update constraint processor, and database
design tool are separate modules, they all constitute the solution to constraint processing in
multilevel relational databases. That is, these three approaches provide an integrated solution to
security constraint processing in a multilevel environment. Figure 5 illustrates the integrated
architecture. In this architecture, the constraints and schema which are produced by the
constraint generator are processed further by the database design tool. The modified
constraints are given to the Constraint Updater in order to update the constraint database. The
schema is given to the MLS/DBMS to be stored in the metadatabase. The constraints in the
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constraint database are used by the query and update constraint processors. We assume that
there is a trusted constraint manager process which manages the constraints. In a dynamic
environment where the data and the constraints are changing, then the query constraint
processor will examine all the relevant constraints and ensure that users do not obtain
unauthorized data. 3

Output from
Constraint

User Interface

Datarbase
Update Query Constraint Dsig
Processor processor Updater T oI

(Constraints
Constraint Schema

Database: ) •

(DM~l~el • MS/DBMS •Metadatabase

Figure 5. Integrated Architecture

3 Note that if the database is inconsistent, then the security policy for database updates is not satisfied if it is
intended that the database must satisfy the constraints at all times. A way to ensure the consistency of the
database would be to halt the operation and recompute the levels of the affected data. However, for many
applications, especially for time critical ones, this may not be feasible. That is. the system must be operational.
This is why we need the query processor to function during times where there could be inconsistencies due to a
dynamic environment. The security policy should take this into consideration.

164



3. SUMMARY AND FUTURE CONSIDERATIONS

In this paper we have defimed various types of security constraints and discussed an
integrated approach to constraints processing. In particular, some constraints are handled
during query processing, some during database updates, and some during database design.
The next step will be to implement the integrated architecture described in section 2.

We have focussed mainly on techniques for constraint enforcement. There are also other
issues that need to be investigated. Techniques need to be developed to ensure that the
constrr.nts are consistent and complete. Techniques also need to be developed to generate an
initial set of constraints from the specification of a multilevel database application.
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ABSTRACT

The Multipolicy Model permits a multilevel secure (MLS)
system to enforce multiple, perhaps contradictory security
policies. Data carries policy domain codes to indicate
which security policies should be enforced on this data and
multiple label segments to supply the attributes needed for
each policy. Metapolicies cocrdinate the enforcement of
multiple security policies. Multiple security policies are
maintained independently by multiple policy domain
administrators.

This paper illustrates that the current TCSEC security
policy paradigm can be enlarged to meet the needs of a more
interrelated and integrated world. Multiple policies permit
more natural modelling of real-world security practices and
allow easier sharing of data among users in different
security domains. Commercial applications include medical,
financial, and investigative systems that cross policy
domains. Military applications include communication,
command, and control (C3) systems in multinational and
multiservice battle theaters.
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INTRODUCTION

Integrating security policies on today's multilevel secure
(MLS) computer systems is a difficult, sometimes impossible
problem'. When the security policies themselves cannot be
integrated, the systems built to implement these policies
cannot be integrated either.

Sometimes the only way to solve impossible problems is to
transcend them. For example, when astronomers found the
mathematics of an earth-centered planetary system impossibly
complicated, Copernicus developed a new model with the sun
at the center. His paradigm simplified planetary astronomy
and initiated waves of discovery by others. Thomas Kuhn
documents a number of these ground-breaking paradigm shifts
in his book, The Structure of Scientific Revolutions. 2

Hoping for similar breakthroughs, computer security founder
Dr. Willis Ware has called for a new MLS paradigm which will
make networking and integration of MLS systems easier.

This paper outlines a model based upon multiple policies
which may become a new security paradigm. It describes the
current paradigm, identifies some of its shortcomings, and
summarizes some of the requirements for an alternate
paradigm. It proposes a new model, and describes its
components and workings. Finally, the paper reviews
possible implementation strategies, applications and
benefits, and raises critical issues.

The author presented an earlier version of this paper at the
National Institute of Standards and Technology (NIST) on
April 10, 19913 and convinced the audience that the GOSIP
standard label should leave room for multiple policies.
This paper expands on the earlier work, exploring the
components of a Multipolicy Model in more detail.

This paper is being presented at the Fourth RADC Multilevel
Database Security Workshop for two reasons. First, the
Multipolicy Model may help solve some of the 'impossible'
MLS DBMS problems, such as integrating MLS application
policies with MLS DBMS and MLS operating system policies.
Secondly, the work on the Multipolicy Model is just
beginning, and has received no funding to date. Hopefully,
the attention the model receives at the RADC workshop will
encourage the financial support necessary to develop a
substantial and quantitative model.
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THE CURRENT PARADIGM

The TCSEC

The Trusted Computer System Evaluation Criteria (TCSEC or
Orange Book) embodies the United States' security paradigm.'
It assumes a single "system security policy" which can be
divided into major subpolicies such as Confidentiality,
Integrity, and Assurance of Service. The subpolicies are
further subdivided. For example, Confidentiality can be
divided into Access Control and Non-Access Control policies,
and Access Control policies can be subdivided into Mandatory
Access Control (MAC) and Discretionary Access Control (DAC).
However, the TCSEC paradigm assumes that all these
subpolicies cohere together to represent one overall system
security policy. The single overall policy drives the
choice of security mechanisms and is the foundation of most
assurance efforts.

The single-policy paradigm works well with stand-alone
systems but causes problems when systems must be networked
or combined and security policy integration is required.
For example, when MLS products with slight variations in
policies, such as Operating System (OS), Database Management
System (DBMS), and user applications, must work together,
there may be policy integration difficulties as well as
other interoperability issues.5 The same holds true when
systems enforcing different policies, such as U.S.A.
Department of Defense (DOD), North Atlantic Treaty
Organization (NATO), European Community (EC), and France,
must interact and share classified data. Interoperability
often requires compromises.

The TNI

The Trusted Network Interpretation (TNI) of the TCSEC
enlarges the single-policy paradigm so that multiple
policies may coexist on networks. It permits each node on a
network to have its own nodal security policy, but
stipulates that the network as a whole must have an overall
global network security policy which is used as the basis
for evaluating the security of the network6 .

The TDI

The Trusted Database Interpretation (TDI) focuses on
evaluating Trusted Computing Base (TCB) subsets. Each
subset can enforce a different security policy, such as MAC

4
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or DAC. The TDI assumes, however, that these subpolicies

cohere into a single consistent overall security policy7.

The ITSEC

The draft International Technology Security Evaluation
Criteria (ITSEC)4 permits a user to specify a security
policy, select a system meeting his needs, then request a
certified evaluation center to do an evaluation to provide
the necessary assurance that the selected system is able, in
fact, to carry out the user's security policy. There is no
restriction on what functionality could be in the user's
policy. The policy could include integrity, availability,
non-repudiation, and cryptography, for example. The ITSEC
follows the TCSEC lead in requiring users to integrate
multiple separate policies into a single coherent system
security policy.

Problems With The Current Paradigm

The paradigm of a single security policy with multiple
coherent subpolicies has some major shortcomings which are
becoming apparent now that multilevel secure systems are
being fielded.,

It's inflexible. If a user wants to modify built-in
aspects of the system security policy, the whole system
must be reevaluated.

Exchanging sensitive data with systems with other
security policies is difficult or impossible in real-
time. Guards are needed at all interfaces, and mapping
rarely can translate security levels from one policy to
the other without upgrading.

It's unrealistic. The real world has multiple
coexistent security policies. A computer security
officer creating an automated security policy1 0 must
often integrate diverse and contradictory security
policies together into a single coherent policy to meet
TCSEC criteria. Canada's experience trying to
integrate the national privacy policy with the national
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disclosure policy into a single policy lattice
illustrates the real difficulties users face **.

Performance is poor. Adding security to existing
systems seriously slows down throughput.

The current paradigm must be enlarged to meet the needs of a
more interrelated and integrated world. With a few
significant enhancements, the single-policy paradigm can be
extended into a more flexible, more interoperative, better-
performing multipolicy paradigm.

REQUIREMENTS FOR A NEW PARADIGM

What must a larger and more inclusive paradigm do? It
should:

Handle bottom-up system construction. The end-user,
supposedly the originator of the system security policy, can
change only the policy lattice values and system parameters
without reevaluation. We need a paradigm which permits the
end-user to establish much more of his own security policy
without requiring a reevaluation of the whole system.

Separate the policy from the enforcement mechanism. Because
of the single-policy paradigm, current trusted systems
implement the system security policy as an integral part of
the system, making it impossible to separate the policy from
the mechanisms which implement that policy.1 A more
flexible paradigm would separate policy from mechanism so
that mechanisms can enforce more than one policy, and
policies can be tailored.13

Ease integration of trusted system components. Under the
single-policy paradigm, each purchased component, including
hardware, operating system, DBMS, and applications packages,
must be integrated into a coherent package that can be
proven to implement the end-user's security policy. This
integration is difficult when diverse vendors' components
implement slightly different security policies or slightly
different versions of the same security policy. We need
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both standards and a model which accommodates policy
variations.

Ease sharing data with other policy systems. The
single-policy paradigm founders on the pressing need to
share data with others who have different security
policies. In multinational conflicts like the Persian
Gulf, US DOD users need to share classified data with
allied computers that implement different national or
international security policies.

Enforce the originator's security policy. Current
strategies for sharing data across security policy
boundaries (Guards, Man-in-the-loop) frequently must
upgrade or downgrade data, thus losing the original
classification. The assessment time required for human
downgrading makes it difficult to share data in real-
time in a fast-moving multinational battlefield
situation. Even if the multinational situation is one
of cooperation rather than conflict (for example,
divisions of a multinational corporation, or
international electronic funds transfer), we would like
to be able to enforce the originator's security policy
while sharing data among computer systems.

Permit contradictory policies to operate in parallel.
To use a medical example, different states have passed
different laws about releasing AIDS data. If an AIDS
patient from Connecticut is in a New York hospital,
which laws should apply to the release of data, New
York's or Connecticut's or both? Similarly, different
hospitals have very different policies about release of
data to insurance companies. Some, for convenience,
give a patient's entire medical record when an
insurance company makes a request for information.
Others provide only the data that the insurer has
requested and needs to know. If a patient of a doctor
at the need-to-know hospital must go for surgery to the
other, will the second hospital protect the entire
medical record in accordance with the first hospital's
policy or its own? Release of sensitive medical data
benefits health insurance companies who review medical
records for evidence of risk of AIDS and terminate
insurance for high risk clients.

The current TCSEC/TNI/TDI policy paradigm may preclude
systems such as a national AIDS databank which enforces
many different Mandatory Access Control (MAC) policies
(one for each state, plus one for the nation). It
makes it difficult to build the European Community
health system where the varying disclosure laws of 12
different countries must be implemented and maintained.
A new paradigm which permits contradictory
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organizational policies to operate in parallel is
needed.

Improve the performance of trusted systems. Adding
security to a system usually degrades its performance
significantly, largely because of access control checks
and auditing.

Other. The list above is not exhaustive. As more multilevel
systems are implemented, we will become aware of more
difficulties and requirements.

Solving these problems is essential to widespread user
acceptance of MLS systems.

THE MULTIPOLICY MODEL

The Opportunity

The Multipolicy Model will solve significant portions of
these long-standing problems. First, it provides a vehicle
for users to add their own security policies to a system
without disrupting or invalidating existing evaluated
policies. Secondly, it eases integration problems by
preserving the original classification of data when data is
passed across policy boundaries. Thirdly, it permits one
machine to enforce a variety of parallel security policies
which are not necessarily consistent with one another.
Fourthly, it may improve trusted system performance by being
implemented in high-speed parallel processing architecture.

The Components

Like any security model, the Multipolicy Model has Subjects,
Objects, definitions of allowable operations, and a
Reference Monitor to mediate subjects access to objects in
accordance with the rules. Like any security model with
mandatory access control (MAC), Labels are associated with
Subjects and Objects and used to determine the attributes of
subjects and objects for mediation purposes. As in any
security model, security policy data is stored in a policy
Lattice, which can be initialized and modified by the System
Security Officer.

However, in order to support multiple policies, the
Multipolicy Model requires several components which do not
appear in current security models. There are multiples of
each of the following:

(1) Security Policy Domains1',
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(2) Security Policy Domain Codes"
(3) Labels or label segments",
(4) Security policies, including

(a) Allowable operations
(b) Policy lattices
(c) Separate user policies

(5) Metapolicies1 7

(6) Security Policy Enforcers.

Each of these components is described in detail below.

Security Policy Domains

Today there are many different authorities responsible for
maintaining various levels of security policy: ISO, ECHA,
DoD, AF, AFB, to name a few. The general approach to
creating a computer system security policy is to integrate
all these policies and represent the combined policy on the
computer. This technique makes it very difficult to change
the system security policy when any of the organizational
security policies changes.

The Multipolicy Model permits multiple distinct security
policy domains, administered by different organizational
entities each with complete policy autonomy in its domain,
to be modeled in a computer system.

Domains may be autonomous, each with its own subjects,
objects, policies, and reference monitor. A multipolicy
model implemented on the Amdahl secure computer"' with its
seven isolated domains might work this way. Domains may
cross each other, so that subjects or objects may belong to
more than one domain and fall under more than one policy.
(The rules for controlling the interactions of multiple
policies is described later under 'Metapolicies').

Security policies change rarely. When required, however,
Domain Administrators can implement changes in policy in
their domains in a variety of ways. For example, if they
are located remotely, they could "securely download" new
policy lattices and/or code, send revised firmware chips
for installation by each System Security Officer (SSO), or
simply work through the SSO directly.

In a multipolicy situation, an object may fall under one
domain or another or even multiple domains. Security policy
domain codes are associated with security labels or label
segments and indicate which policy domain applies to this
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label. For example, an object which falls under both
Canadian and US security policies would need two policy
domain codes, one for the US policy and one for the Canadian
policy. Whenever access control decisions are made, these
policy domain codes are checked first so that the proper
policy enforcers and policy lattices can be invoked.

Security Policy Domain Codes

Every object must have one or more codes indicating which
security policy or policies apply to the object. These
codes are associated with the security label and indicate to
the security policy enforcer how to interpret the security
attributes in the label.

Example Format:

OBJECT /SECURITY ATTRIBUTES / POLICY CODE

Examples:

Patient / John Jones / 10010001001 / Privacy-NY

The string of bits representing patient Jones' release
permissions will be interpreted in accordance with the New
York privacy format and the New York privacy policy.

This policy domain code format resembles the proposed
European Computer Manufacturers Association (ECMA) security
domain codes on security labels which indicate under which
label convention the label is formatted, eg. International
Standards Organization (ISO)"'. These policy domain codes
could easily be implemented using the proposed NIST GOSIP
Register Index Code (RIC). The RIC points to the semantic
definition of the label as registered in the Security
Objects Register of a standards organization, such as the
proposed NIST Computer Security Object Register3.

Multiple labels or label segments

Multiple labels or label segments describe the security
attributes for the object. There will be one label segment
for each policy that applies to the object. On a small
scale, this is already a common practice. For example,
DEC's secure operating system SEVMS provides a security
label which may be divided into a Sensitivity label segment
and an Integrity label segment.
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If an object comes under control of more than one policy, a
set of attributes is needed for each policy. These could be
handled as multiple labels, a strategy used by some network
protocols. However, in order to preserve the intuitive
notion that each object has one security label, in this
paradigm each set of attributes will be implemented as a
label segment accompanied by a policy domain code. This was
proposed by the author for the NIST GOSIP standard label,
and accepted for the last internal draft standard.

Example Format:

OBJECT / LABEL / POLICY / LABEL / POLICY / etc.
SEG / CODE SBG

Examples:

Patient/ Jon Jones / 01001001010 / Privacy-MASS/
01001000001/ Privacy-CONN / 010010101111 /Privacy-NY

Patient Jones, who lives in Connecticut, is hospitalized in
New York and then sent for consultation to a teaching
hospital in Massachusetts. The privacy policies for all
three states apply to him and his hospital record has three
sets of privacy attributes.

To avoid representing attributes in binary, the attributes
will be summarized by type in subsequent examples.

Example:

Military Target data / Integrity Attributes / BIBA
/Sensitivity Attributes / US-DOD

Under the single-policy model, a set of security policies is
normally integrated into one single policy. For example, at
an Air Force base, the DOD security policy, the Air Force
security policy, and the Base security policies are
integrated and implemented as a single automated security
policy. This is not too difficult with hierarchical
policies where subordinate policies automatically inherit
the policies of their superior.

However, under the Multipolicy Model, each of the
hierarchical policies - the DOD policy, the Air Force
policy, and the Air Force Base (AFB) policy - would be
separate policies, and a policy domain code would be
required for each. This gives the AFB security
administrator the flexibility to change local base policy
while leaving national DOD and AFB policies untouched.
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Example: Object / Security Attributes / DOD /Security
Attributes/ AF / Security Attributes / AFB

Note that metapolicy rules in such hierarchical systems
always give precedence in case of conflict to the higher
policy.

Netapolicies

Metapolicies are policies about policies. They coordinate
the interaction between policies, specifying order,
priority, and conflict-resolution strategies.

A metapolicy includes:

1. Who can set policy, who can change policy, and what the
procedures are for changing policies.

2. Rules about developing, verifying, and protecting
security policies.

3. Rules about the interaction of multiple security
policies, especially where they conflict. These rules
will specify:

A. Multiple Policy Relationships. The ways that the
multiple policies relate to each other could be
hierarchical, serial, parallel, overlaid, or circular.

B. Policy Interactions. The ways that multiple
policies interact with each other could include
inheritance, mutual exclusivity, mutual dependence, and
other.

C. Precedence rules. Where should the enforcer begin
enforcing multiple policies? In what order should they
be enforced?

D. Documentation. Metapolicies should be included in
both formal and informal models.

E. Transfers of control among policies and after all
policies are enforced.

Security Policies

As in a single policy machine, security policies consist of:
a) definitions of subjects and objects; b) definitions of
allowable operations; and c) the rules of the policy,
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including a policy lattice for ordering sensitivity levels,
integrity levels, compartments, etc. As in the single-
policy machine, each policy is separate from the others and
tamperproof. However, each computer system will be able to
enforce more than one policy. If appropriate, a single node
could enforce every policy implemented in the network.

One of the frustrations experienced by users is their
limited ability to modify the security policies which are
built into the system. The capacity to absorb multiple user
policies (representing multiple nations, multiple divisions,
or several kinds of integrity policies) without reevaluating
the whole system is an integral part of the Multipolicy
Model. One implementation method would be for the SSO to
enter user policies via trusted software. Each policy is
stored in an isolated area, and its interactions with other
evaluated policies are controlled by the appropriate
metapolicies.

Security Policy Enforcers

Security policy enforcers implement the rules of a policy on
the subjects and objects. Access control policy enforcers
and other non-access control policy enforcers will be
needed. Each enforcer is trusted to protect and enforce the
policies in its domain correctly and must be tamperproof.

Multiple policies may be enforced in several different ways.
A single reference monitor may access multiple independent
policy lattices, as occurs now with Secrecy and Integrity
policies. Multiple reference monitors may enforce multiple
different policies, or multiple versions of the same policy,
or multiple subsets of the same policy.

CROSSING POLICY BOUNDARIES

A definition of the allowable operations is an integral part
of a security policy. This section defines some of the
critical operations and permitted interactions of the
Multipolicy Model.

When an object is exported from one machine to another, what
happens in the multipolicy environment?

It is possible for an object to go from one machine to
another without leaving its original policy domain. The
receiving machine implements more than one policy and may
well implement the policy indicated in the label associated
with the object. If the receiving machine does not enforce
the object's policy or policies, it must either pass the
object on to another machine which enforces the appropriate
security policy, or hold on to the object without permitting
any access. Which choice is made could depend upon
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instructions which accompany the object, or on the
metapolicy for the receiving computer.

IMPLEMENTATION OPTIONS

There are several reasonable approaches to the
implementation of a multipolicy model.

1. Multiple sets of rule-based policies;

2. Multiple co-processors;

3. Distributed policies;

4. Parallel processors;

5. Multidomain machines;

6. Redundant fault-tolerant policies.

Each is described below.

Rule-based

Several researchers, including Page, Heaney, Adkins, and
Dolsen of Planning Research Corporation 21 and Abrams,
LaPadula, Eggers and Olsen of MITRE 2 2 , have been exploring
Rule-Based access control policies. The Rule-Based concept
permits security policies to be implemented as sets of rules
and has been formally modelled by Dr. La Padula 2 3 .

The Multipolicy Model could be implemented with multiple
sets of rule-based access control policies implemented in
software or firmware. There would be separate sets of rules
for users, with a trusted user interface so that user
policies could be changed by user authorities independently
or with only loose communication with the System Security
Officer.
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Mul,.iple Co-processors

A second approach is to use multiple coprocessors, such as
LOCK (Logical Coprocessing Kernel), to implement multiple
policies. Although LOCK has an integral built-in security
policy, it provides for kernel extensions which can handle
different policies under control of the sidearm.21 A
multipolicy machine could, in theory, be constructed out of
many single-policy coprocessors operating in parallel,
improving processing speed.

Distributed System

A third approach is to use a distributed system where each
machine implements a local security policy, and data whose
sensitivity prevents it from being processed on one machine
is forwarded to another. This approach could be used with
current trusted equipment, although it would not be very
efficient.

For efficiency, each local machine should implement all the
local security policies, and data which doesn't come under
the local policies would be forwarded to a remote node for
policy enforcement. A master policy node which be able to
enforce all or most of the policies on the system.

The distributed approach assures that local policies will be
applied quickly, while keeping the capability for
implementing rare policies.

Parallel Processors

Very large scale integrated circuits (VLSI) make it possible
to build trusted systems in hardware. Processors on a chip
make it possible for each policy and its enforcer to operate
in parallel with other policies and enforcers.

Multidomain Machines

Some secure computers, such as Amdahl's, provide a number of
separate domains which could be used to support a finite
number of different security policies.

Hybrids

Many comzinations of the above techniques would be possible,
as illustrated with the second distributed example. Other
approaches not mentioned here are possible as well.

24 ayd~ar, 0. 8aik , Joamhpb SIM~A, Jetffy La , 0.4M Ywak: Uavqls tinq

Dmzt Uao, Wosia of t• 199 m • U0AaiYt 3vamo am

Bmmwlty and Prlyvcy, Nay 1-3, 19o, oaklad., Californla

179



APPLICATIONS

The Multipolicy Model is most useful where there clearly are
multiple security policies involved. For example, the
Europeans are planning a European Community Health System
which would cover the citizens of many countries. Now
several nations are trying to develop a single unified
security policy for the international health system. Given
the different values and temperaments of the nations
involved, it might bc more fruitful to set up a multipolicy
system so that differtnt nations can independently control
the security policies for their citizens. This is
particularly important in the area of privacy where
different values prevail in different communities.

There are many military multipolicy applications.
Multinational battle management, multinational command and
control centers, logistics involving multiple services, and
multinational communications systems are just a few. Often
there is one information security policy in peacetime which
is loosened when war starts because security is less
critical than response time or other factors. This is also
a multipolicy situation and might be handled best by
defining both policies and shifting from one to the other
rather than "loosening" the more restrictive polic-y.

Commercial applications for multipolicy machines are
numerous. There is no single standard security policy, like
that of the DOD, in the commercial world, so a secure
system, to be marketable, must be able to adapt to multiple
policies. Of course, extremely knowledgeable people can
with ingenuity adapt the TCSEC to meet a wide range of
needs. Dr. Bell's paper5 on the commonality of security
policies illustrates this clearly. However, most users are
neither so knowledgeable nor so ingenious, and the
Multipolicy Model would facilitate expression of their
diverse and unanticipated security policies.

Multinational banks, multinational corporations,
international non-profit activities such as the Red Cross
and CARE, merged corporations with multiple corporate
cultures, colleges and companies which cross state borders,
international telecommunications systems, all are candidates
for multipolicy systems.
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ISSUES

In spite of the wide range of applications for the
Multipolicy Model, there are several important questions to
ask about it. Here are some anticipated questions, and
possible answers to the concerns expressed.

Q. Is a Multipolicy mModel really necessary? Can't we do it
all with the TCSEC?

A. The Multipolicy Model, when developed, will be more
elegant, more flexible, and easier to use than the TCSEC.
The Multipolicy Model naturally models the world outside the
DOD, and will become more important as integrity, privacy
and ethical concerns creep to the fore.

Q. Will the National Computer Security Center (NCSC) accept
the Multipolicy Model?

A. If the details are sufficiently worked out to prove that
it is secure, the NCSC would welcome a new paradigm,
especially if it does not invalidate the excellent work in
security accomplished to date. The Electronic Systems
Division of the U.S. Air Force plans to fund a feasibility
study of the Multipolicy Machine via a Small Business
Innovation Research (SBIR) Phase I grant to Data Security
Inc. Starting in Sept. 1991, we start exploring these and
other issues.

Q. Several national and international agencies (EC!A and
ISO, for example) are working on sensitivity label standards
to make information interchange easier between MLS systems.
Can the Multipolicy Model incorporate these evolving
standards?

A. Yes. The Multipolicy Model incorporates European
standards and is helping to shape US standards. These
standards are included in the discussion on labels and
domain codes.

Q. Can the Multipolicy Model be used on a machine which is
simple to manufacture, evaluate, and accredit? Can
commercial off-the-shelf components be used?

A. Hopefully, the answer to both questions is yes. Several
vendors who have seen the model are claiming that their
machine will implement such a model. SCTC and Amdahl are
among them.

Q. How much more complicated will it be to evaluate
multiple instead of single policy machines?

A. Although initially more difficult, it will eventually be
easier to evaluate multiple policy machines than single
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policy machines because the policy will be separate from the
mechanisms. Now, policy and mechanisms are integrated and
must be evaluated together. When rule-based or other
machines which separate policy from mechanism are accepted,
it will be sufficient for the vendor to prove to the
evaluators that their mechanisms implement any of a set of
security policies. Proving that the particular policy of a
particular installation is valid and supported by the
mechanism is left to the certification and accreditation
process.

Q. Where will the Multipolicy Model be the most useful?

A. The Multipolicy Model will be most useful in networks,
which require higher levels of either computer or physical
security. The Multipolicy Model will probably be built
first in Europe where the need to cross security domain
boundaries is well-established and understood.

CONCLUSIONS

The Multipolicy Model is a security model which could be
successfully implemented in many ways. It will provide
greater flexibility for users who need to add their own
security policy specifics to the security policy of an
existing system. It will make it easier to transfer data to
systems in other security policy domains. It will let users
model complex real world security policies more easily and
permit contradictory policies to operate in parallel.
Parallel processing may permit an improvement in trusted
system performance, as well.

The Multipolicy Model is now just a concept with potential.
Much more work needs to be done to make it a reality.
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SECTION 6

DISTRIBUTED DATABASE MANAGEMENT

Rome Laboratory has been sponsoring research in trusted distributed database management
for several years. In their paper "Trusted Distributed Database Management Systems R&D -
A Progress Report," Bhavani M. Thuraisingham and Harvey H. Rubinovitz describb the
components of a trusted distributed DBMS, the results of their protyping effort and their
current research activities.
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TRUSTED DISTRIBUTED DATABASE MANAGEMENT SYSTEMS R&D

- A PROGRESS REPORT

Bhavani Thuraisingham and Harvey Rubinovitz
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ABSTRACT

This paper describes research and implementation results on interconnecting (i) homogeneous trusted
database management systems and (ii) heterogeneous trusted database management systems.

1. INTRODUCTION

Information has become a critical resource in many organizations, and sharing and accessing information
has become a piority. The rapid development of distributed database management systems (DDBMS) will
enable this need to be achieved. Interconnecting the increasing number of databases scattered across several sites
is gaining popularity, and tools which enable users of one system to use other systems are being developed in
order to reconcile the contrasting requirements of the different DBMSs. Efficient approaches for interconnecting
different database systems, as well as administering them, are also being sought [SHET90].

The increasing popularity of distributed database systems should not obscure the need to maintain security
of operation. That is, while data access and sharing is necessary, it is also important that the system operate
securely in order to overcome any malicious corruption of data as well as prohibit unauthorized access to and use
of classified data especially with military applications. For many applications, it is especially important that the
DDBMS should allow users, who are cleared to different levels, access to the database consisting of data at a
variety of sensitivity levels without compromising security. That is, users should only obtain the information to
which they are authorized.

A considerable amount of work has been carried out in providing multilevel user/data handling capability in
centralized database management systems, known as trusted database management systems (TDBMS) (see, for
example, [AFSB83, GRAU85, DENN87, STAC90]). In contrast, trusted distributed database management
systems (TDDBMS) are only recently receiving some attention. As TDBMSs are become commercially
available, the secure interoperability of these systems will be necessary.

We have taken an incremental approach to R&D in TDDBMSs.1 Initially, we investigated policy, design
and implementation issues for a TDDBMS which functions in a homogeneous environment. In such an
environment it is assumed that all of the TDBMSs operate the same way. In addition to R&D in TDDBMS which
functions in a homogeneous environment, at present, we have also investigated security issues for
interconnecting heterogeneous TDBMSs. The results of our investigation are described in [COLL90, RUBI90a,
RUBI90b, THUR91 a, RUBI92]. This paper summarizes the progress that we have made.

2. INTERCONNECTING IDENTICAL TDBMSs

In this section we describe our research and implementation results on interconnecting identical TDBMSs.
In particular, we discuss: (i) the definition of an architecture and mandatory security policy, (ii) design,
simulation and implementation of secure query processing algorithms, and (iii) design and simulation of secure
distributed concurrency control algorithms.

2.1 ARCHITECTURE AND POLICY ISSUES

An architecture for interconnecting multiple identical TDBMSs is shown in figure I (THUR90]. This
architecture has been derived from the choice architecture for a DDBMS given in [CERI84]. In this architecture,

In general, by a TDDBMS we mean one that functions either in a homogeneous or heterggecous/utmonoms envirnimntL A TDDBMS
which functions m a homogeneous environment could be based on the multidatsase approach (in which cae it consists of a collection of
interconnected identical TDBMSs) or it could provide an integrated global schema to all of its usm. A TDDBMS which functions in a
heterogeneous/autonomous environment is one which interonnects heterogeneous nd possibly autonomous TDBM~s. A TDDBMS could be
federated if the component TDBMSs pauticipate in one or mote federations. The TDDBMS that we have considered in our invemtgaion is based
on the multidatabase approach.
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the TDDBMS consists of several nodes that are interconnected by a trusted network. All of the nodes are
designed identically. Each node is capable of handling multilevel data. Each node has a Relational TDBMS
which manages the local multilevel database. Each node also has a distributed processing component called the
Secure Distributed Processor (SDP). The components of the SDP are the Distributed Query Processor (DQP),
the Distributed Update Processor (DUP), the Distributed Transaction Manager (DTM), and the Distributed
Metadata Manager (DMM). The DQP is responsible for distributed query processing. The DUP is responsible
for distributed update processing. The DTM is responsible for distributed transaction management. The DMM
manages the global metadata. The global metadata includes information on the schemas which describe the
relations in the distributed database, the way the relations are fragmented, and the locations of the fragments.
SDP may be implemented as a set of processes separate from the local TDBMS. Two DQPs (or DUPs. DTMs,
DMMs) at different nodes communicate in accordance with the security policy enforced.

Multilevel Database M. Mutilevel Database Multilevel DatabaseII
IV)BMS at Mite I Tn.M_ &I Sit 2 I RMS 1i, N

Sectre Dmstributed Processor NwSece Dii

User 
User 

User r

[~Trusted Communication Network
Figure 1. Architecture for a TDDBMS

"The security policy for a TDDBMS will consist of a set of polices for mandatory security, discretionary
security, integrity, and authentication among others. Our focus has been on a mandatory security policy for a
TDDBMS. An effective mandatory security policy for a TDDBMS should ensure that users only acquire the
information at or below their level. The basic mandatory security policy for the TDDBMS that we have
considered has the following properties:

(i) Subjects are the active entities (such as processes) and objects are the passive entities (such as
relations).

(ii) Subjects and objects are assigned security levels. The set of security levels form a partially ordered
lattice (e.g., Unclassified < Confidential < Secret < Top Secret).

(iii) A subject has read access to an object if the subject's security level dominates the security level of the
object.

(iv) A subject has write access to an object if the subject's security level is the security level of the object.
(Note that this is a restricted version of the *-property of the Bell and LaPadula security policy
[BELL75 1).

(v) A subject SI can send a message to another subject S2 if the security level of S2 dominates (i.e., is
greater than or equal to) the level of S1.

In designing a secure system. it may be necessary for additional security policy extensions to be
enforced. Such policy extensions are carried out by trusted subjects. That is, it has to be ensured that such a
subject's security critical functions are carried out correctly. In addition, any subject that is privileged to violate
the security policy must also be trusted. For example, if a message has to be sent from a Secret subject to an
Unclassified subject, then the Secret subject must be trusted.

The security architecture that we consider is shown in figure 2. We assume that each node has a Trusted
Computing Base (TCB). The TCB is the part of the host that enforces the basic mandatory security policy at that
host. The Network TCB is responsible for enforcing the network security policy. The TCB hosts various
trusted applications, such as a TDBMS and a SDP. Additional security policy extensions may be enforced by
these applications, depending on their designs. In our design, the system must ensure that two DQPs (DUPs.
DTMs. DMMs) at different nodes can communicate with each other only if they both operate at the same level.
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Figure 2. Security Architecture for a TDDBMS

2.2 QUERY PROCESSING

An important function of a TDDBMS is to provide the facility for users to query the distributed database
system and obtain authorized and correct responses to the queries. Ideally, the distribution of the data should be
transparent to the global users. That is, these users should query the distributed database as if it were a
centralized system. The distributed query processor (DQP), which is responsible for handling queries, should
determine the locations of the various relations involved and transmit the requests to the corresponding sites. The
responses obtained from these sites have to be assembled before delivery to the user. In this section we describe
the architecture of the DQP and then describe the design, simulation, and implementation of the join algorithms
implemented. We have focussed mainly on the join algorithms because the join operation is time-consuming and
has been studied extensively for nonmultilevel DDBMSs [CERI84].

2.2.1 Architecture of the DQP

The process architecture of the DQP is shown in figure 3. The components of the DQP are the Request
User Interface Manager (Request-UIM), Response User Interface Manager (Response)), Query Transformer
(QT). Query Optimizer (QO), and the Distributed Execution Monitor (DEM). The Request-UIM accepts a user's
request and parses the request. The parsed request is given to the QT to decompose the request on a relation into
requests on the various fragments. The decomposed request is given to the QO which generates an optimized
execution strategy. The execution strategy is given to the DEM to carry out the execution. The DEMs at the
various nodes communicate with each other via the trusted network in order to carry out the execution strategy.
We assume that the network interface manager (NIM) which connects the DQP to the network is part of the
trusted network. Finally, the DEM at the user's site delivers the response generated to the user via the Response.
Next we discuss the impact of the security critical components of the DQP.

To/From Remot Site

Request interface Response Interface
Manager ILI J

Quay
Transformer

4,

TDBMS nthz

Figure 3. Architecture of the DQP

189



Case 1: Untrusted DQP: Let us consider the case where the entire DQP is untrusted. In this case we
assume that there is a DQP process per security level. When a user operating at level L issues a request, the DQP
at level L is invoked by the trusted operating system to act on behalf of the user. The DQP at level L obtains the
relevant metadata classified at or below level L in order to generate the execution strategy. The DEM component
of the DQP, which carries out the execution strategy, acts as a user process to the TDBMS at that node. The
TDBMS will ensure that the only data at or below the DEM's level is retrieved. The trusted network must ensure
that the DEM operating at level L at a node N can only communicate with a DEM operating at at level L at a node
M. Finally, the DEM at the user's site delivers the response assembled to the user. Since the DQP is untrusted.
the labels displayed by the TDDBMS are advisory. In some cases this may not be a severe limitation if the labels
displayed by the TDBMS at a node are themselves untrusted.2 Another disadvantage with having an untrusted
DQP is that one cannot guarantee the integrity of the data itself. For example. a user could request for the names
of employees located at city I and the the query parser, transformer, or optimizer could modify the query to
retrieve the employees located at city 2. An advantage of the having an untrusted DQP is that it has no security
critical components.

Case 2: Trusting the entire DQP: At the other extreme, the entire DQP could be trusted. Then not only
can it be guaranteed that the labels are trusted, the integrity of the results can also be ensured. However, this
would mean trusting the SQL compiler well as all of the other modules of the DQP. As a result, all of the
problems associated with having a large TCB will be present with this approach and it may be difficult to obtain
high assurance with such an approach.

Case 3: Trusting the DEM and the Response User Interface: If trusting the labels is a requirement
for an application, then the DQP must preserve the integrity of the labels (assuming that the labels displayed by
the local TDBMSs are trusted). There are various ways to ensure this. In one of the approaches, all of the
modules of the DQP except the DEM and the Reponse-UIM are untrusted. In this case, the DEMs can be
guaranteed to preserve the integrity of the labels and the Response will guarantee that the labels accurately reflect
the data. The trusted network must also ensure that the labels are not tampered with. Although this approach
will significantly reduce the amount of trusted code than if the entire DQP were trusted, there is still a large part
of the code that needs to be trusted. Furthermore, since the request-UIM, the query decomposer, and the query
optimizer are untrusted, the integrity of the data returned cannot be guaranteed.

2.2.2 Algorithms

The DQP implements algorithms for the select-all operation as well as the join operation. Our focus was
mainly on the join operation as it is the most time-consuming operation and has been studied extensively for
nonmultilevel DDBMSs. We have simulated as well as implemented two join algorithms. The first algorithm is
called a nondistributed join algorithm and the second one is called a distributed join algorithm. The difference
between the two algorithms is the following. The nondistributed algorithm first merges the fragments of a
relation classified at or below the user's level and then performs the join operation between the merged fragments
using semi-join as the query processing tactic. During the merge operation, lower level polyinstantiated tuples
are removed. 3 The distributed join algorithm first reduces the fragments classified at or below the user's level
using the semi-join operation, joins the reduced fragments, and finally does the merge operation. The lower level
polyinstantiated tuples are eliminated during the merge operation. Both algorithms are static. That is, the query
execution strategy is generated first and then the execution is physically carried out. In determining zan execution
strategy. Ae used the cost model described in [CERI84J.

A multilevel distributed database stored at two sites is illustrated in figure 4. We assume that all of the
tuples of EMP-U and DEPT-U are classified at the Unclassified level and all of the tuples of EMP-S and DEPT-S
are classified at the Secret level. In this database there is polyinstantiation across nodes. Figure 5 shows the join
operation between the relations EMP and DEPT. In the restricted join operation the lower level polyinstantiated
tuples are not included. In the unrestricted join operation, all of the tuples are included.

2 Note that TDBMSs such as SeaView fDENNr7 and Lock Data Views ISTAC90 m designed in uich a way that the labels mw untrusted.
Furthermore, TDBMS architectures such as OS-provided MAC Architecture and the Replicated Distributed Architectue do not ensur label
integrity.

3 Polyirstantiaton {DENNS•g is the mechanism that has been proposed to handle cover stories as well as prevent signalling channels in
multilevel relauonal database management systems. We have assumed tuple level polyinstantation where it is possible to have two different
tuples with the same primary key at different security levels.
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SITE I
EMPI-U DEPTI-S

SS# Name Salary D# D1 Dnane MGR
I John 20 10 10 C. Sci Jane
2 Paul 30 20
3 James 40 20 30 English David
4 Jiu 50 20
5 Mary 60 10 40 French Peter
6 Jane 70 20

SITE 2
EMP2-S DEPT2-U

SS# Name Salary D# D# Dname MGR

3 James 70 20 10 Math Jane
7 David 80 30 20 Physics Mary

8 Peter 90 40

Figure 4. Multilevel Distributed Database

SS# Name Salary D# Dnanx MGR SS# Name Salary DO Jname MGR

I John 20 10 Math Jane 1 John 20 10 C. Sci Jane
2 Paul 30 20 Physic! Mary 2 Paul 30 20 Physics Mary
3 James 40 20 Physic! Mary 3 James 70 20 Physics Mary
4 Jill 50 20 Physic Mary 4 Jill 50 20 Physics Mary
5 Mary 60 10 Math Jane 5 Mary 60 10 C. Sci Jane
6 Jane 70 20 Physic,, Mary 6 Jane 70 20 Physics Mary

7 David 80 30 English David
8 Peter 90 40 French Peter

Unclassified Join _ _ I_____

Secret Restricted Join

SS# Name Salary D# Dname 4GR

I John 20 10 C. Sci. Jane
2 Paul 30 20 Physics May
3 James 70 20 Physics Mary
4 Jill 50 20 Physics May
5 Mary 60 10 C. Sci. Jane
6 Jane 70 20 Physics May
7 David 80 30 English Davi
8 Peter 90 40 French Peter
I John 20 10 Math Jane
5 Mary 60 10 Math Jane
3 James 40 20 Physics Mary

Secret Unrestricted Join

Figure 5. Result of the Join Operation

2.2.2 Current Status of the Prototype

Figure 6 shows the configuration of the current prototype. The nodes are situated at MITRE's Bedford and
Washington sites. Two of the machines are MicroVaxes running Ultrix (both products of Digital Equipment
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Corporation). The local TDBMS in each of these machines is the Secure SQL DataServer (a product of Sybase.
Inc.). The third machine is a SUN-3 running SunOS (both products of Sun Microsystems). The local TDBMS
in this machine is the nonmultilevel version of Sybase DataServer (product of Sybase, Inc.). We implemented a
front-end to this DBMS so that some multilevel security features of the Secure SQL DataServer were simulated.4

MicroVAX
SUN MITRE Washington

MITRE Bedford,
E-Building Secure SQL DataServer(Sybase Product)

DQien DQP

Network

Front-end to simulate
Secure SQL DataServer multilevel security features

(Sybase Product) Standard SQL DataServer

MicroVAX SUN
MITRE Bedford, MITRE Bedford,

B-Building K-Building

Figure 6. Configuration of the Current Prototype

During FY90 we implemented the DQP on the MicroVax and then ported it to the Sun-3. The details of this
implementation are discussed in [RUBI90b]. During FY91, the Distributed Query Processor (DQP) was
modified in order to establish communication between the Secure SQL DataServers at MITRE's Bedford and
Washington sites. Specifically, the following modifications were made.

The first modification was made to accommodate the differences between the two Secure SQL DataServers
when dealing with the name of the attribute which contains the security label. The Server at the Bedford site used
the name "sl", while the Server at Washington's site refers to this as "secjevel". The second modification was
made to handle the differences between the two Servers when returning the results of the SQL query of the form
"select * from emp". One site would return the security label along with the attributes of EMP while the other
would only return the attributes of EMP. We also had to modify the method that was used for a server to inform
its existence to the other machines which either had a DQP or a clienL In the earlier version of the DQP, the
Unix 5 command, RCrT, was used by the servers to accomplish this. RCP is a privileged command which may or
may not be granted based on the user's host and the user's name. Since this privilege was not allowed between
the servers at MITRE's Bedford and Washington sites, a program was developed to write the address of each
server to a file replicated at each machine.

The prototype was demonstrated by placing a number of logical nodes at MITRE's Bedford and
Washington sites to show that more than three severs could be used simultaneously. During a demonstration, the
client could have been placed at either location.

4 For a dSiscussion on the Secet and Standard versions of the SQL Server we refer to ISYBA891. While our design assmed that the network
and the operating systems were tmusted, those used in the implementation were not.

5 Unix is a trademark of AT&T Bell Laboratories.
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2.2.3 Simulation Results 6

We simulated both the nondistributed and distributed join algorithms. We used the simulation language
HGPSS developed by Rubinovitz [RUBI89]. A total of five experiments was carried out. Experiment I varied
the number of tuples in the fragments and obtained execution times for the nondistributed algorithm. Experiment
II varied the number of tuples in the fragments and obtained execution times for the distributed algorithm.
Experiment III varied the number of sites and obtained execution times for both algorithms. Experiment IV also
varied the number of sites and obtained the execution times for both algorithms. However, Experiment IV
considered a very large number of sites while Experiment Ill considered a smaller number of sites. Experiment
V varied the number of tuples and obtained execution times for both algorithms. Unlike Experiments I and i1,
Experiment V considered a very large number of tuples. The main purpose of Experiments 1, II, and Ill was to
compare the results obtained from the simulation to the results obtained from the implemented prototype. Overall
we found that the simulation experiments matched the results obtained from the prototype fairly closely. A
detailed discussion of the experiments are given in [RUBI92]. From these experiments we have arrived at the
conclusion that in general, the nondistributed join algorithm gives better performance.

2.3 TRANSACTION MANAGEMENT/CONCURRENCY CONTROL

We have designed and simulated secure concurrency control algorithms. In this section we discuss the
transaction model and the algorithms simulated.

2.3.1 Transaction Model 7

In a multilevel environment, a distributed transaction as well as the associated subtransactions execute at
the level of the user who requested its execution. At each node that the distributed transaction executes, there is
an application agent. The agents operate at the same level as that of the transaction. The agents of the same
transaction communicate with each other. One of the agents is called the root agent. When a "Begin
Transaction" command is encountered, the root agent invokes the Distributed Transaction Manager (DTM) at the
same node. This DTM, which acts as the coordinator, operates at the same level as the agent. The coordinator
then issues the appropriate "Local Begin" command to its local transaction manager (LTM) and also
communicates with other DTMs at the nodes in which the transaction executes in order to inform them of the
"Begin Transaction" command. The DTMs at the other nodes communicate with their LTMs. Note that all of the
DTMs as well as the LTMs operate at the same level as that of the transaction. When a "Commit" command is
encountered, then the coordinator carries out the commit protocol. Figure 7 illustrates a model for distributed
transaction management in a multilevel environment.

The security policy for the distributed transaction management extends the security policy for local transaction
management. We assume the following policy for a centralized system.

"* Each transaction is executed at the level of the user whose requests the execution. This level must
dominate the level assigned to the program itself. (Note that a transaction is a program and could be
assigned a security level.)

"* A transaction does not change levels during its execution.
"* A transaction reads from and writes into objects according to the mandatory security policy enforced by

the system.

Extensions to distributed transaction management are the following:
"* A distributed transaction executes at the level of the user who requested the corresponding application to

be executed;
"° A distributed transaction's subtransactions also execute at the same level;
"• The subtransactions execute in accordance with the security policy enforced by the local system (it is

assumed that all nodes enforce the same policy);

6 Note that in general simulation experiments should precede prototype development. This is because simulation studies enable real-world

scenarios to be depicted. As a result, one could select more suitable algorithms for implementation. However. in the case of the query
processing algorithms, we implemented the prototype first before conducting the simulation experiments. It turned out to be useful because we
were able to compare the simulation results with the implemented prototype for three of the five experiments.

7 A transaction is a program unit which consists of a sequence of query and update requests. It must be executed in its entirety or not
executed at all. Transaction management in a DDBMS involves the handling of distributed transactions. By a disributed transaction we mean
a transaction which executes at multiple sites. The portion of the transaction which executes at a particular site is a subtransacton associated
with that site.
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"* A distributed transaction (at the global level) reads and writes objects in accordance with the global
mandatory security policy enforced (we assume that this is the same as for the local systems);

"* A distributed transaction does not change levels during execution.
"* Two DTMs at different nodes communicate only if they both operate at the same security level.

Node I Node J Node K

at Level L at Level L at Level L

Fre a igue 7. Mlitievl Distributed Transaction MDielA Dmaorissuted nTransaction Managerm i Level C contr tlManager at Level L ,,"" MngraLelL I
I _ I

Manager at Level L Manager at Level L Manager at Level L

Figure 7. Multilevel Distributed Transaction Model

A major issue in transaction management is concurrency control. Concurrency control techniques ensure that
the database is left in a consistent state when multiple, users attempt to update it at the same time. In a multilevel
environment, in addition to consistency, it has to be ensured that high level transactions cannot affect the lower
level ones at the local as well as the global levels. Concurrency control techniques must ensure that consistency
as well as security has to be preserved. In our approach, there is a scheduler per security level. The scheduler at
level L is responsible for scheduling transactions at level L. The concurrency control algorithms should ensure
that the actions of higher level transactions cannot affect the lower level ones. At the same time the consistency
of the distributed database must also be preserved. Concurrency control algorithms are discussed in the next
section.

2.3.2 Concurrency Control

We have adapted some concurrency control algorithms to function in a secure environmenL In this section
we describe two of these algorithms that we simulated. One is the adapted locking technique and the other is the
adapted timestamping technique. Below we provide a summary of these algorithms. A more detailed discussion
is given in [RUBl92].

Locking

We have adapted the locking algorithm [ESWA76] for a multilevel environment as follows. To simplify the
discussion we assume that there are two security levels, Secret and Unclassified. Since a Secret data object can
be accessed only by Secret transactions, we are concerned with only Unclassified data objects. We assume that
there are two copies (both Unclassified) of an Unclassified data object; one copy for Unclassified transactions
and one for Secret transactions. For a data object X, let XI be the copy for Unclassified transactions and X2 be
the copy for Secret transactions. When Unclassified transac'tions request locks, the actions of the Secret
transactions have no affect. The Unclassified transactions contend or locks on X1. As soon as an Unclassified
transaction finishes updating XI, a new copy of XI is created. Let this copy be X3. X3 will then be the new
version of X for the Secret transactions. After an Unclassified transaction requests the write lock for XI, any
read request on X by a Secret transaction would be directed to X3. X2 may be deleted later by a garbage
collector. To ensure consistency, X2 should be deleted only if there are no locks queued for it. Since we
assume that X2 is an Unclassified object, the process which deletes X2 must be trusted8 .

8 If the garbage collector is untreated, then it must be Unclassified. It will have no way of knowing whether the read requesta of the Secret
transactions are completed. Sufficient time could be given before deleting X2. Hbwever. there can be no guarantee that all the rad requests on
X2 are completed. A second solution would be to create the copy X2 for Secret transactions at the Secret level. Then a Secret process can delete
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In distributed two-phase locking, each distributed transaction acquires all the locks before -.leasing any. We
also assume that a transaction acquires all its locks before it starts execution. The locking technique is used
together with two-phase commit for distributed transactions. In our work we have shown that the algorithm
satisfies both the local and global serializability conditions [RUBI92].

Timestamping

We have adapted the timestamping algorithm [REED83] as follows Our objective is to ensure that higher
level transactions do not interfere with lower level ones. In addition, the integrity of the database has to be
maintained also. We propose the following modification to the timestamp algorithm. As in the case of the
locking approach, we use two copies of an Unclassified data object; one for Unclassified transactions and one for
Secret transactions. Whenever a Secret transaction issues a read request to an Unclassified data object X, first
ensure that all Unclassified transactions with lower transaction numbers have completed their requests on X.
Then process the read request issued by the Secret transaction. Note also that after an Unclassified transaction
finishes updating an object, a new copy of the object is made for the Secret transactions. The old copy used by
the Secret transaction may be deleted by a garbage collector. To ensure consistency, this copy must be deleted
only after all Secret transact "ms with transaction numbers lower than that of the Unclassified transaction have
finished the read operation on iL This means that the process which deletes it must be trusted.

The timestamping algorithm together with two phase commit is used for distributed transaction management.
We have shown that both the local and global serializability conditions are satisfied.

2.2.3 Summary of Simulation Experiments

Twelve experiments were conducted. Experiments I to VI were for the locking concurrency contno.
algorithm and experiments VII to XII were for the timestamping algorithm. For all experiments, the following
two parameters we-re varied: transaction arrival rate and the number of objects accessed by each transaction. The
transaction arrival rate varied for each set of experiments with an exponential rate with a mean of: 100, 200, and
300. The number of objects accessed was either 10 or 20. For all experiments the following parameters were
fixed: the security level of each transaction was either Unclassified or Secret with an equal probability, the ratio
of reads to writes were equal, the network configuration was identical, 50 transactions were allowed to complete.
For each experiment, low, high, and average runtimes were gathered.

The results of the two sets of experiment. seem to indicate that the ti,.estamping algorithm, on the average,
performs better than the locking algorithm. One reasun for this might be caused by the time delay used to wait
before trying to obtain the necessary locks before the transaction is allowed to continue. A slight delay of 200
was used which might have affected the overall run time of each transaction. Details of the experiments are given
in [RUBI91dJ.

3. MIGRATING TO A HETEROGENEOUS PLATFORM

Various types of heterogeneity have been identified for a secure distributed environment [THUR91b]. We
have focussed mainly on one type of heterogeneity which is handling different accreditation ranges. We discuss
architectural issues, query processing, and transaction management for such an environment and then briefly
identify some of the other types of heterogeneity that need to be addressed in the future.

3.1 HANDLING DIFFERENT ACCREDITATION RANGES

In this section we describe query protessing in a limitcd heterogeneous environment. In particular, we
consider the case where not all of the nodes handle the same accreditation ranges.

Figure 8 illustrates a nonreplicated architecture for an TDDBMS which handles different accreditation
ranges. That is. the lower level data are not replicated at higher levels for security reasons. Such an architecture
is more appropriate for an autonomous environment as each local node has control of its own data. In this
example, the TDBMS at site 1 handles the range from Confidential to Top Secret while the TDBMS at site 2
handles the range from. Unclassified to Secret. It is assumed that each no"Ae has a TDBMS and a SDP hosted on a

X2 after all read requests are completed. However, in this caoe. if there are N security levels which dominate the Unclassified level, then a copy
of the Unclassified data object X needs to be -- intamed at each of the N levels. tiere must ail be a way t create the copies at these higher
levels.
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Secure Operating System. The operating system and the local TDBMS ensure that subjects read objects at or
below their level and subjects write into objects at their level. The modules of SDP include the DQP. The nodes
are connected via a trusted network. The network ensures that there is two-way communication between
processes at different nodes operating at the same security level. If the processes we operating at different
security levels, then communication must be via a trusted process.( Multilevel Database ( Multilevel Database

Confidential, Secret, and Uncl3ssified, Confidential,
TopSecret Data and. Secret Data d

I

TDBMS at Site I TDBMS at Site 2
Supports Confidential to Supports Unclassified to
Top Secret Secret

Secure Distributed S re Distributed • Other Nodes
Processor (SDP) Processor (SDP)

User User
iTrused Communicat ion Newr

Figure . onreplicated Arcitecture for a HeterogeneousDBMS

Since the lower level data is not replicated at a higher level, when a Top Secret user queries the system at
site 1, the query has to be routed to site 2 which does not handle the Top Secret level. Therefore, the query must
be routed via a trusted process which must ensure that it does not contain any Top Secret information. Since
there is no data replication, update processing is less complex with this architecture as maintaining the
consistency of the replicated copies is not an issue.

3.2. DQP FOR THE NONREPLICATED ARCHITECTURE

Figure 9 illustrates the software architecture of the DQP for the nonreplicated TDDBMS. In addition to the
modules of the architecture of the DQP illustrated in figure 4, in figure 9, there is a module called the Query
Trusted Process (QTP) which is between the DEM and the trusted network. QTP is a trusted process which must
ensure that any sensitive portion of the query must be removed before it is transmitted to a remote DEM.

For example, consider the query, "Select all from EMP where Salary is greater than 50K" posed by a Top
Secret user at site 1. Let us also assume that site I handles the range from Unclassified to Top Secret while site 2
is accredited to handle the range Unclassified to Secret. If the query has to be sent to site 2, the DEf at site I
must remove the qualification clause from the query as it might contain potentially sensitive information. Note
that DEM is an untrusted process and therefore it cannot be guaranteed to carry out its actions correctly.
However, if it attempts to send any request to the DEM at site 2, the trusted network will reject it, as site 2 is not
accredited to handle the Top Secret level. In other words, the NIM must be trusted to ensure that a Top Secret
DEM does not communicate with a node which is not accredited to handle the Top Secret level. Therefore, the
DEM at site I must send the query first to the QTP at site i. QTP will check whether the qualification clause has
been removed from the query, the string EMP is classified atmost at the Secret level, downgrade the request to
the Secret level, and pass the request to the network via the NIM. The network then gives the request to the DEM
at site 2 at the Secret level. The modified request will be to "select all from EMP". The Secret DEM at site 2 will
process the request and send the result to the Top Secret DEM at site I via the QTP. The DEM at site I will then
select those tuples from EMP where the salary is greater than 50K.
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4 Query I Response To/From Remote Site
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Figure 9. DQP for a Heterogeneous Environment

As discussed in section 2, if the entire DQP except the QTP is untrusted, then the integrity of the labels
cannot be preserved. In order to preserve the integrity of the labels, the DEM and the Response-UIM must also
be trusted. Note that if the DEM is to be trusted, then fth functions of the QTP can be incorporated into those of
the DEM. That is, a separate module for the QTP is not needed.

3.3 DTM FOR THE HETEROGENEOUS ARCHITECTURE

Issues on transaction management for a homogeneous environment were discussed in section 2.3. Figure
10 illustrates a transaction model for the limited heterogeneous environment that we have considered. It is
assumed that there are four levels LI < L2 < L3 < LA. Site I handles the range L2 - LA, site 2 handles the range
LI - L3, and site 3 handles the range LI - L2. The DTMs at level L communicate with each other. However,
since site 2 does not handle level IA and site 3 does not handle the levels L3 and LA, the DTM at level LA at site
I communicates with the DTM at level L3 at site 2 and the DTM at level L2 at site 3 via a trusted process which
we call the Transaction Trusted Process (TTP). Since site 3 also does not handle the level L3, the DTM at level
L3 at site I communicates with the DTM at level L2 at site 3 via the TIP. We assume that there is such a M at
each site.

As in the case of a homogeneous environment, we assume that a transaction is a program unit that is a
series of query and update requests. A transaction may be distributed. That is, a transaction may be executed at
several sites. We also assume that a transaction is assigned a security level and can be executed by a user whose
level dominates the level of the transaction. However, if a transaction issued by a user at level L has to be
executed at a site which does not handle the level L, then the subtransaction at that site is a read-only
subtransaction. For example, if the execution of a transaction is issued by a user at level LA at site 1, then that
transaction can only read data items at sites 2 and 3. Therefore, sites 2 and 3 do not participate in the commit
operation. That is, at sites 2 and 3 it is automatically assumed that such a transaction is committed. For the
limited heterogeneous environment that we have considered, we have found that the locking algorithm, as we
have described earlier, does not maintain consistency. The timestamping algorithm not only ensures security, but
it also provides consistency. In this section, we discuses the issues for both algorithms.

Consider the locking technique for concurrency control. Let us assume that site 1 handles only the
Unclassified level and site 2 handles both the Unclassified and Secret levels. Let X and Y be Unclassified data
objects at sites I and 2 respectively. Since site 2 also handles the Secret level, there is a copy of Y at site 2 for
the Secret transactions. Let Ti and Tj be two transactions executing at both sites I and 2. We assume that Ti is
Unclassified and Tj is Secret. Since Tj is Secret, it can only read the data objects X and Y and it must originate at
site 2. Furthermore, the subtransaction of Tj which executes at site I must be Unclassified and, therefore, any
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read rTto sie via t e asite 2. Let Oi dOj be conflicting operations by Ti and Tj,,pet, v y.btm andlY. Thsmeans tat i isawrteoperatonandOjisareadoperation. Thesubransactions of Ti and Tj that execute at site I are Til and TjI respectively, and the subtransactions of Ti andTj that execute at site 2 are Ti2 and Tj2 respectively. Note that Til, Ti2, and Tjl execute at the Unclassified leveland Tj2 executes at the Secret level.

At site 2, suppose Ti2 obtains a write-lock first on Y. If Tj2 then requests a read-lock on Y, it must waituntil Ti2 releases the lock. However at site 1, suppose Tjl obtains a read-lock on X first- If Til requests awrite-lock on X, since Tjl is Unclassified, Til must wait until TjI fmishes. As soon as Tjl fmishes the readoperation. Ti I can obtain the write-lock on X. Ti I and Ti2 can continue executing at sites I and 2. respectively.After Ti2 releases its write lock, Tj2 reads the new version of Y. Global serializability is not maintained becauseTj precedes Ti at site I and Ti precedes Tj at site 2.
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Figure 10. Model for Transactions
Next we discuss the timestamping algorithms for the same example. We consider two cases.(i) Suppose the timestanp of Ti is less than the timestamp of Tj. When the suburmactions ar assignedtimestamps at sites I and 2. the 7TP at site 2 can ensure that TjI is sent to site I after Til is sent This wouldmean that the timestamp of Ti I is less than the tinestamp of Tj 1. Also the DTM operating at the Secret level atsite 2 can ensure that the timestamp of Tj2 is greater than the timestamp of Ti2. Therefore, at both sites theoperation Oi will precede Oj. That is, Ti will precede Tj.

(ii) Suppose the timestamp of Tj is less than the timestamp ofTi. If Til is assigned a timestamp at site I beforethe TTP sends Tj I to site I, then Tj is aborted. Otherwise, Tj I is assigned a timestamp less than the timestampof Til. At site 2, the DTM operating at the Secret level can ensure that the timestamp of Tj2 is less than thetimestamp of Ti2. If Oj does not precede Oi at site 1, then Tj I is aborted. This would mean that Tj is notcommitted. Suppose Oj precedes Oi at site i. If Oj does not precede Oi at site 2, then the only way this ispossible is either: (a) for Tj2 to be aborted or (b) for Oj to be requested before Oi is requested, but Oi is carriedout before Oj is carried out. However, Oj will be carried out on the older version of the data object and not onthe version that results after Oi completes. The end result is as if Oj precedes Oi at site 2.
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3.4. FUTURE CONSIDERATIONS

In order to ensure the interoperability of trusted DBMSs, in addition to handling different accreditation
ranges, several other types of heterogeneity need to be addressed. In this section we describe some of the issues
that need further investigation.

(i) Schema (or data model) Heterogeneity: Not all of the databases in a heterogeneous architecture are
represented by the same data model. Therefore, the different conceptual schema have to be integrated. In order
to do this, translators which transform the constructs of one multilevel data model into those of another need to
be developed.

(ii) Transaction Processing Heterogeneity: Different TDBMSs may utilize different algorithms for
transaction processing. The various concurrency control mechanisms that have been adapted to function in a
multilevel environment need to be integrated for a heterogeneous environment.

(iii) Query Processing Heterogeneity: Different TDBMSs utilize different query processing and
optimization strategies. One of the research areas here is to develop a global cost model for distributed query
optimization.

(iv) Query Language Heterogeneity: Different TDBMSs will utilize different query languages.
Standardization efforts are necessary to develop a uniform interface language.

(v) Constraint Heterogeneity: Different TDBMSs enforce different integrity/security constraints which
may often be inconsistent. For example, one TDBMS could enforce a constraint that all employees are Secret
while another TDBMS may enforce a constraint that all employees are TopSecret. These differences need to be
reconciled.

(vi) Different Security Policies: Each TDBMS could enforce its own security policy for mandatory, as
well as discretionary security. In addition, different authentication and integrity mechanisms may be used. For
example, one system could enforce a read-at-or-below-your-level and write-at-your-level policy while another
system could enforce read-at-or-below-your level and write-at-or-above your-level policy.

(vii) Different Granularity of Classification: Even if the relational data model is utilized at all nodes, the
granularity of classification could be different. For example, one system could enforce classification at the tuple
level while the other system could enforce classification at the element level.

From the above discussion it is clear that the steps to achieving secure interoperability are by no means
straightforward. and we believe that some of them are impossible, given the current state-of-the-art both in
DDBMS and TDBMS technologies. Therefore, until global solutions to interconnecting heterogeneou and
autonomous nonmultilevel databases become available, security policies, models, and architectures have to be
developed on a case-by-case basis. That is, customized solutions to meet the individual customer needs are
presently needed.

4. SUMMARY

In this paper we have provided a summary of some the essential points of our work in trusted distributed
database management systems (TDDBMS) R&D. We first described an architecture for a homogeneous
TDDBMS, and discussed query processing and transaction management algorithms for such an architecture.
Then we migrated to a heterogeneous platform and discussed architectural issues as well as query processing
and transaction management in a limited heterogeneous environment. In particular, issues on handling different
accreditation ranges were described. We also identified the types of heterogeneity that must be handled if
different TDBMSs are to be interconnected successfully.
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